モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CGCGへの扉安藤幸央機械学習月刊エンタメAIニュースディープラーニング河合律子生成AI吉本幸記OpenAIGANNVIDIA音楽Google三宅陽一郎強化学習ニューラルネットワークStable DiffusionChatGPTグーグル森川幸人シナリオQADeepMind人工知能学会GPT-3自然言語処理マイクロソフト大規模言語モデルFacebook大内孝子映画著作権AIと倫理キャラクターAI敵対的生成ネットワークルールベースアート倫理SIGGRAPHモリカトロンゲームプレイAIスクウェア・エニックスモリカトロンAIラボインタビュー画像生成LLMNPCNFTプロシージャルMidjourneyデバッグMinecraftDALL-E2StyleGAN遺伝的アルゴリズム画像生成AI自動生成VFXAdobeテストプレイメタAIアニメーションテキスト画像生成ロボット深層学習ファッションCEDEC2019音楽生成AIディープフェイクデジタルツインメタバースVRボードゲームDALL-ECLIPビヘイビア・ツリーマンガCEDEC2021CEDEC2020ゲームAI不完全情報ゲームナビゲーションAI小説畳み込みニューラルネットワークGDC 2021JSAI2022作曲MicrosoftNVIDIA OmniverseGDC 2019マルチエージェントCEDEC2022MetaマインクラフトAIアート3DCGStability AIメタデジタルヒューマン懐ゲーから辿るゲームAI技術史toioジェネレーティブAIスポーツプロンプト栗原聡手塚治虫CNNNeRFDALL-E 3バーチャルヒューマンBERTUnityOmniverseJSAI2023鴫原盛之HTN階層型タスクネットワークソニーエージェントGPT-4マルチモーダル汎用人工知能JSAI2020GTC20233DTensorFlowインタビューブロックチェーンイベントレポート対話型エージェントAmazonロボティクスDQN水野勇太アバターUbisoftGenvid TechnologiesガイスターStyleGAN2ARELSIGTC2022教育SIGGRAPH ASIANetflixJSAI2021はこだて未来大学Bard研究シムピープルMCS-AI動的連携モデルRed RamモーションキャプチャーTEZUKA2020CEDEC2023テキスト生成インディーゲームElectronic Arts音声合成マーケティングメタデータGDC SummerStable Diffusion XLCMMicrosoft Azureアストロノーカキャリア模倣学習動画生成AIeスポーツスタンフォード大学アーケードゲームテニスサイバーエージェントトレーディングカード音声認識メディアアート類家利直eSportsBLUE PROTOCOLシーマンaibo合成音声チャットボットブラック・ジャックEpic GamesAWS徳井直生クラウド斎藤由多加AlphaZeroTransformerGPT-2rinnaAIりんなカメラ環世界中島秀之PaLM哲学ベリサーブPlayable!GPT-3.5ハリウッド理化学研究所Gen-1SFテキスト画像生成AIデータマイニング東京大学現代アートDARPAドローンシムシティゲームエンジンImagenZorkバイアスマーダーミステリーASBSぱいどんアドベンチャーゲームAI美空ひばり手塚眞バンダイナムコ研究所スパーシャルAINEDOFSM-DNNLEFT 4 DEADイーロン・マスク通しプレイ論文OpenAI Five本間翔太馬淵浩希Cygames森山和道Audio2Faceピクサープラチナエッグイーサリアム効果音ボエダ・ゴティエビッグデータ中嶋謙互Amadeus Codeデータ分析MILENVIDIA ACEナラティブNVIDIA RivaOmniverse ReplicatorWCCFレコメンドシステムNVIDIA DRIVE SimWORLD CLUB Champion FootballNVIDIA Isaac Simセガ柏田知大軍事田邊雅彦トレカMax CooperGPTDisneyFireflyPyTorchChatGPT4眞鍋和子バンダイナムコスタジオAI Frog Interactive新清士大澤博隆SFプロトタイピング齊藤陽介お知らせMagic Leap OneTencentモリカトロン開発者インタビュー宮本茂則バスケットボールGeminiTikToktext-to-imageサルでもわかる人工知能text-to-3DVAEDreamFusionTEZUKA2023リップシンキングRNNUbisoft La Forge自動運転車ワークショップ知識表現ウォッチドッグス レギオンVTuberIGDA立教大学秋期GTC2022市場分析フォートナイトどうぶつしょうぎRobloxジェイ・コウガミ音楽ストリーミングMITAIロボ「迷キュー」に挑戦野々下裕子Adobe MAXマシンラーニング村井源5GMuZeroRival Peakpixivオムロン サイニックエックスGPTs電気通信大学対話エンジン稲葉通将ポケモン3Dスキャン橋本敦史リトル・コンピュータ・ピープルCodexシーマン人工知能研究所コンピューティショナル・フォトグラフィーPreferred Networksゴブレット・ゴブラーズ絵画3D Gaussian SplattingMicrosoft DesignerアップルイラストシミュレーションSoul Machines柿沼太一完全情報ゲーム坂本洋典釜屋憲彦GitHub CopilotウェイポイントLLaMAパス検索対談藤澤仁生物学GTC 2022Apple Vision Pro画像認識SiemensストライキStyleCLIPDeNA長谷洋平クラウドコンピューティングmasumi toyotaIBM宮路洋一OpenSeaGDC 2022SNSTextWorldEarth-2BingMagentaYouTube音声生成AIELYZA PencilScenarioSIGGRAPH2023松尾豊AIピカソGTC2021AI素材.comCycleGANテンセントAndreessen HorowitzAIQVE ONENetHackキャラクターモーションControlNet音源分離NBAフェイクニュースユニバーサルミュージックRPG法律Web3SIGGRAPH 2022世界モデルレベルデザインDreamerV3AIボイスアクターUnreal Engine南カリフォルニア大学NVIDIA CanvasGPUALife人工生命オルタナティヴ・マシンサウンドスケープLaMDATRPGマジック:ザ・ギャザリングAI Dungeonゲーム背景AGI不気味の谷ナビゲーションメッシュ高橋ミレイ深層強化学習松原仁松井俊浩武田英明ELYZAフルコトELYZA DIGEST建築広告西成活裕ハイブリッドアーキテクチャApex LegendsELIZA群衆マネジメントライブポートレイトNinjaコンピュータRPGライブビジネスWonder StudioAdobe Max 2023アップルタウン物語新型コロナ土木MindAgentKELDIC周済涛BIMBing Chatメロディ言語清田陽司インフラBing Image CreatorゲームTENTUPLAYサイバネティックスMARVEL Future FightAstro人工知能史Amazon BedrockAssistant with BardタイムラプスEgo4DAI哲学マップThe Arcadeバスキア星新一X.AISearch Generative Experience日経イノベーション・ラボStyleGAN-XLX Corp.Dynalang敵対的強化学習StyleGAN3TwitterVLE-CE階層型強化学習GOSU Data LabGANimatorXホールディングスWANNGOSU Voice AssistantVoLux-GANMagiAI Act竹内将SenpAI.GGProjected GANEUMobalyticsSelf-Distilled StyleGANSDXLArs ElectronicaニューラルレンダリングRTFKTAI規制岡島学AWS SagemakerPLATONIKE欧州委員会映像セリア・ホデント形態素解析frame.ioClone X欧州議会UXAWS LambdaFoodly村上隆欧州理事会誤字検出MusicLM認知科学中川友紀子Digital MarkAudioLMゲームデザインSentencePieceアールティSnapchatMusicCapsLUMINOUS ENGINEクリエイターコミュニティAudioCraftLuminous ProductionsBlenderBot 3バーチャルペットパターン・ランゲージ竹村也哉Meta AINVIDIA NeMo ServiceMubertちょまどマーク・ザッカーバーグヴァネッサ・ローザMubert RenderGOAPWACULVanessa A RosaGen-2Adobe MAX 2021陶芸Runway AI Film Festival自動翻訳Play.htPreViz音声AIAIライティングLiDARCharacter-LLMOmniverse AvatarAIのべりすとPolycam復旦大学FPSQuillBotdeforumChat-Haruhi-Suzumiyaマルコフ決定過程NVIDIA MegatronCopysmith涼宮ハルヒNVIDIA MerlinJasperハーベストEmu VideoNVIDIA MetropolisForGamesNianticパラメータ設計ゲームマーケットペリドットバランス調整岡野翔太Dream Track協調フィルタリング郡山喜彦Music AI Tools人狼知能テキサス大学ジェフリー・ヒントンLyriaGoogle I/O 2023Yahoo!知恵袋AlphaDogfight TrialsAI Messenger VoicebotGoogle I/OインタラクティブプロンプトAIエージェントシミュレーションOpenAI Codex武蔵野美術大学慶應義塾大学StarCraft IIHyperStyleBingAI石渡正人Future of Life InstituteRendering with Style手塚プロダクションIntel林海象LAIKADisneyリサーチヴィトゲンシュタインPhotoshop古川善規RotomationGauGAN論理哲学論考Lightroom大規模再構成モデルGauGAN2京都芸術大学CanvaLRMドラゴンクエストライバルズ画像言語表現モデルObjaverse不確定ゲームSIGGRAPH ASIA 2021PromptBaseBOOTHMVImgNetDota 2モンテカルロ木探索ディズニーリサーチpixivFANBOXOne-2-3-45Mitsuba2バンダイナムコネクサス虎の穴3DガウシアンスプラッティングソーシャルゲームEmbeddingワイツマン科学研究所ユーザーレビューFantiaワンショット3D生成技術GTC2020CG衣装mimicとらのあな高橋力斗NVIDIA MAXINEVRファッションBaidu集英社FGDC淡路滋ビデオ会議ArtflowERNIE-ViLG少年ジャンプ+Future Game Development ConferenceグリムノーツEponym古文書ComicCopilot佐々木瞬ゴティエ・ボエダ音声クローニング凸版印刷コミコパヒストリアGautier Boeda階層的クラスタリングGopherAI-OCRゲームマスター画像判定Inowrld AIJuliusSIE鑑定ラベル付けMODAniqueTPRGOxia PalusGhostwriter中村太一バーチャル・ヒューマン・エージェントtoio SDK for UnityArt RecognitionSkyrimエグゼリオクーガー田中章愛実況パワフルサッカースカイリムCopilot石井敦銭起揚NHC 2021桃太郎電鉄RPGツクールMZComfyUI茂谷保伯池田利夫桃鉄ChatGPT_APIMZserial experiments lainGDMC新刊案内パワサカダンジョンズ&ドラゴンズAI lainマーベル・シネマティック・ユニバースコナミデジタルエンタテインメントOracle RPGPCG成沢理恵MITメディアラボMCU岩倉宏介深津貴之PCGRLアベンジャーズPPOxVASynthDungeons&Dragonsマジック・リープDigital DomainMachine Learning Project CanvasLaser-NVビートルズMagendaMasquerade2.0国立情報学研究所ザ・ビートルズ: Get BackノンファンジブルトークンDDSPフェイシャルキャプチャー石川冬樹MERFDemucsサッカースパコンAlibaba音楽編集ソフト里井大輝KaggleスーパーコンピュータVQRFAdobe Audition山田暉松岡 聡nvdiffreciZotopeAssassin’s Creed OriginsAI会話ジェネレーターTSUBAME 1.0NeRFMeshingRX10Sea of ThievesTSUBAME 2.0LERFMoisesGEMS COMPANYmonoAI technologyLSTMABCIマスタリングモリカトロンAIソリューション富岳レベルファイブ初音ミクOculusコード生成AISociety 5.0リアム・ギャラガーSuno AI転移学習テストAlphaCode夏の電脳甲子園グライムスKaKa CreationBaldur's Gate 3Codeforces座談会BoomyVOICEVOXCandy Crush Saga自己増強型AIジョン・レジェンドGenie AISIGGRAPH ASIA 2020COLMAPザ・ウィークエンドSIGGRAPH Asia 2023ADOPNVIDIA GET3DドレイクC·ASEデバッギングBigGANGANverse3DFLAREMaterialGANダンスグランツーリスモSPORTAI絵師エッジワークスMagicAnimateReBeLグランツーリスモ・ソフィーUGC日本音楽作家団体協議会Animate AnyoneGTソフィーPGCFCAインテリジェントコンピュータ研究所VolvoFIAグランツーリスモチャンピオンシップVoiceboxアリババNovelAIさくらインターネットDreaMovingRival PrakDGX A100NovelAI DiffusionVISCUITぷよぷよScratchユービーアイソフトWebcam VTuberモーションデータスクラッチ星新一賞大阪公立大学ビスケット北尾まどかHALOポーズ推定TCGプログラミング教育将棋メタルギアソリッドVメッシュ生成KLabFSMメルセデス・ベンツQRコードVALL-EMagic Leap囲碁Deepdub.aiナップサック問題Live NationEpyllionデンソーAUDIOGEN汎用言語モデルWeb3.0マシュー・ボールデンソーウェーブEvoke MusicAIOpsムーアの法則原昌宏AutoFoleySpotifyスマートコントラクト日本機械学会Colourlab.AiReplica Studioロボティクス・メカトロニクス講演会ディズニーamuseChitrakarQosmoAdobe MAX 2022トヨタ自動車Largo.ai巡回セールスマン問題かんばん方式Cinelyticジョルダン曲線メディアAdobe ResearchTaskade政治Galacticaプロット生成Pika.artクラウドゲーミングがんばれ森川君2号AI Filmmaking Assistant和田洋一リアリティ番組映像解析FastGANStadiaジョンソン裕子セキュリティ4コママンガAI ScreenwriterMILEsNightCafe東芝デジタルソリューションズ芥川賞インタラクティブ・ストリーミングLuis RuizSATLYS 映像解析AI文学インタラクティブ・メディア恋愛PFN 3D ScanElevenLabsタップル東京工業大学HeyGenAbema TVLudo博報堂After EffectsNECラップPFN 4D Scan絵本木村屋SIGGRAPH 2019ArtEmisZ世代DreamUp出版GPT StoreAIラッパーシステムDeviantArtAmmaar Reshi生成AIチェッカーWaifu DiffusionStoriesユーザーローカルGROVERプラスリンクス ~キミと繋がる想い~元素法典StoryBird九段理江FAIRSTCNovel AIVersed東京都同情塔チート検出Style Transfer ConversationOpen AIProlificDreamerオンラインカジノRCPUnity Sentis4Dオブジェクト生成モデルRealFlowRinna Character PlatformUnity MuseAlign Your GaussiansiPhoneCALACaleb WardAYGDeep Fluids宮田龍MAV3DMeInGameAmelia清河幸子ファーウェイAIGraphブレイン・コンピュータ・インタフェースバーチャルキャラクター西中美和4D Gaussian SplattingBCIGateboxアフォーダンス安野貴博4D-GSLearning from VideoANIMAKPaLM-SayCan斧田小夜Glaze予期知能逢妻ヒカリ宮本道人WebGlazeセコムLLaMA 2NightShadeユクスキュルバーチャル警備システムCode as PoliciesSpawningカント損保ジャパンCaPHugging FaceHave I Been Trained?CM3leonFortnite上原利之Stable DoodleUnreal Editor For FortniteドラゴンクエストエージェントアーキテクチャアッパーグラウンドコリジョンチェックT2I-AdapterXRPAIROCTOPATH TRAVELERxAI西木康智VolumetricsOCTOPATH TRAVELER 大陸の覇者山口情報芸術センター[YCAM]AIワールドジェネレーターアルスエレクトロニカ2019品質保証YCAM日本マネジメント総合研究所Rosebud AI GamemakerStyleRigAutodeskアンラーニング・ランゲージVoyagerLayer逆転オセロニアBentley Systemsカイル・マクドナルドLily Hughes-RobinsonCharisma.aiワールドシミュレーターローレン・リー・マッカーシーColossal Cave AdventureGDC 2024奥村エルネスト純いただきストリートH100鎖国[Walled Garden]​​プロジェクトAdventureGPT調査齋藤精一大森田不可止COBOLSIGGRAPH ASIA 2022リリー・ヒューズ=ロビンソンMeta Quest高橋智隆DGX H100VToonifyBabyAGIIPロボユニザナックDGX SuperPODControlVAEGPT-3.5 Turbo泉幸典仁井谷正充変分オートエンコーダーカーリング強いAIロボコレ2019Instant NeRFフォトグラメトリウィンブルドン弱いAIartonomous回帰型ニューラルネットワークbitGANsDeepJoin戦術分析ぎゅわんぶらあ自己中心派Azure Machine LearningAzure OpenAI Serviceパフォーマンス測定Lumiere意思決定モデル脱出ゲームDeepLIoTUNetHybrid Reward Architectureコミュニティ管理DeepL WriteProFitXImageFXウロチョロスSuper PhoenixWatsonxMusicFXProject MalmoオンラインゲームAthleticaTextFX気候変動コーチングSoraProject Paidiaシンギュラリティ北見工業大学KeyframerProject Lookoutマックス・プランク気象研究所レイ・カーツワイル北見カーリングホールAppleWatch Forビョルン・スティーブンスヴァーナー・ヴィンジ画像解析Gemini 1.5気象モデルRunway ResearchじりつくんAI StudioLEFT ALIVE気象シミュレーションMake-A-VideoNTT SportictVertex AI長谷川誠ジミ・ヘンドリックス環境問題PhenakiAIカメラChat with RTXBaby Xカート・コバーンエコロジーDreamixSTADIUM TUBESlackロバート・ダウニー・Jr.エイミー・ワインハウスSDGsText-to-ImageモデルPixelllot S3Slack AIソフトバンクPokémon Battle Scopeダフト・パンクメモリスタAIスマートコーチポケットモンスターGlenn MarshallkanaeruThe Age of A.I.Story2Hallucination音声変換Latitude占いレコメンデーションJukeboxDreambooth行動ロジック生成AIVeap Japanヤン・ルカンConvaiEAPneoAIPerfusionNTTドコモSIFT福井千春DreamIconニューラル物理学EmemeDCGAN医療mign毛髪MOBADANNCEメンタルケアstudiffuse荒牧英治人事ハーバード大学Edgar Handy中ザワヒデキ研修デューク大学大屋雄裕QA Tech Night中川裕志mynet.aiローグライクゲーム松木晋祐Adreeseen Horowitz東京理科大学下田純也NVIDIA Avatar Cloud Engine人工音声NeurIPS 2021産業技術総合研究所桑野範久Replica StudiosリザバーコンピューティングSmart NPCsプレイ動画ヒップホップ対話型AIモデルRoblox StudioソニーマーケティングPromethean AIサイレント映画もじぱnote環境音暗号通貨note AIアシスタントMusiioFUZZLEKetchupEndelAlterationAI News粒子群最適化法Art Selfie進化差分法オープンワールドArt TransferSonar群知能下川大樹AIFAPet PortraitsSonar+Dウィル・ライト高津芳希P2EBlob Opera大石真史クリムトDolby AtmosBEiTStyleGAN-NADASonar Music FestivalDETRライゾマティクスSporeクリティックネットワーク真鍋大度デノイズUnity for Industryアクターネットワーク花井裕也画像処理DMLabRitchie HawtinSentropyGLIDEControl SuiteErica SynthCPUDiscordAvatarCLIPAtari 100kUfuk Barış MutluSynthetic DataAtari 200MJapanese InstructBLIP AlphaCALMYann LeCun日本新聞協会プログラミングサム・アルトマン鈴木雅大AIいらすとやソースコード生成コンセプトアートAI PicassoGMAIシチズンデベロッパーSonanticColie WertzEmposyGitHubCohereリドリー・スコットAIタレントウィザードリィMCN-AI連携モデル絵コンテAIタレントエージェンシーUrzas.aiストーリーボードmodi.ai介護大阪大学BitSummit西川善司並木幸介KikiBlenderBitSummit Let’s Go!!サムライスピリッツ森寅嘉Zoetic AIゼビウスSIGGRAPH 2021ペットストリートファイター半導体Digital Dream LabsPaLM APIデジタルレプリカTopaz Video Enhance AICozmoMakerSuiteGOT7DLSSタカラトミーSkebsynthesia山野辺一記NetEaseLOVOTDreambooth-Stable-DiffusionHumanRF大里飛鳥DynamixyzMOFLINActors-HQRomiGoogle EarthSAG-AFTRAU-NetミクシィGEPPETTO AIWGA13フェイズ構造ユニロボットStable Diffusion web UIチャーリー・ブルッカーADVユニボPoint-EXLandGatoアパレル岡野原大輔AI model自己教師あり学習DEATH STRANDINGAI ModelsIn-Context Learning(ICL)Eric Johnson汎用強化学習AIZMO.AILoRAデザインMOBBY’SファインチューニングOculus Questコジマプロダクションロンドン芸術大学モビーディックグランツーリスモ生体情報デシマエンジンGoogle Brainダイビング量子コンピュータSound Controlアウトドアqubit写真SYNTH SUPERAIスキャニングIBM Quantum System 2照明Maxim PeterKarl Sims自動採寸北野宏明Joshua RomoffArtnome3DLOOKダリオ・ヒルハイパースケープICONATESizerジェン・スン・フアン山崎陽斗ワコールHuggingFace立木創太スニーカーStable Audio浜中雅俊UNSTREET宗教ミライ小町Newelse仏教テスラ福井健策CheckGoodsコカ・コーラGameGAN二次流通食品パックマンTesla Bot中古市場Coca‑Cola Y3000 Zero SugarTesla AI DayWikipediaDupe KillerCopilot Copyright Commitmentソサエティ5.0Sphere偽ブランドテラバースSIGGRAPH 2020バズグラフXaver 1000配信京都大学ニュースタンテキ養蜂立福寛東芝Beewiseソニー・ピクチャーズ アニメーション音声解析DIB-R倉田宜典フィンテック感情分析投資Fosters+Partners周 済涛韻律射影MILIZEZaha Hadid Architectsステートマシン韻律転移三菱UFJ信託銀行ディープニューラルネットワーク

CGへの扉 Vol.17:描画を進化させるTensorFlow Graphicsの真価

2020.8.13アート

CGへの扉 Vol.17:描画を進化させるTensorFlow Graphicsの真価

そもそも画像認識の元となる学習データは正しいのか?

先日オンラインで開催された「画像の認識・理解シンポジウム MIRU2020」で発表されたセッション「大規模画像データセットが含む“疑わしい画像”の専門家のワークショップを通した収集と分析」が大変話題になりました。

MIRU 2020 プログラム一覧

これは人工知能を活用した画像解析の学習データとして一般的に使われている ImageNet という巨大データセットの正確性を疑うものです。近年「Are we done with ImageNet?」という2020年の論文から ImageNet の正確性への疑問が注目されました。

論文「Are we done with ImageNet?」は 、2009年頃から画像認識の大規模データセットとして使われてきた ImageNet の正確性、評価に疑いをもって調べ、またその正当性をあげるための提言を述べた研究論文です。ImageNetは、スタンフォード大学が画像認識研究のために公開している巨大なデータベースで、世界中の研究者が利用しています。そこでは約1,420万枚の画像と、そこに何が写っているのかがデータ化されています。例えばある写真に「ダルメシアン」という品種の犬が写っていることが画像とデータとセットで保持されていることにより、機械学習の学習データとしてわざわざ研究者がゼロから集めることなしに研究に集中することができるため、大変重宝されてきました。

ところが、ImageNet の画像には、1枚の画像にひとつのラベルしかつけることができないため、画像に適切なラベルをつけるには限定的すぎること、ある特定の作業者がつけたラベルを過信してしまっているため、データ全体に間違いが紛れ込んでしまっていることが最近課題として指摘されました。

ImageNet の中で「バイク」とラベルが付いた画像一覧(一部)、写真の中にオブジェクトが明確にひとつだけ写り込んでいる場合はほとんど問題が生じない

MIRU2020で発表された「大規模画像データセットが含む“疑わしい画像”の専門家のワークショップを通した収集と分析」では、ImageNet を題材とした画像認識のコンペティションILSVRC 2012のデータセットを元ネタとし、30人ほどのコンピュータビジョン研究の専門家が3日間、目視で28.4万枚の画像をチェックしました。その聞いただけでも眼が疲れてきそうな努力の結果、そのうち約6%にあたる1.7万枚の画像に疑わしいラベルがつけられていることを見出しました。

人間であれば、それぐらいは間違えると思われるかもしれませんが、その間違えたデータをもとに世界中の研究者が画像認識の学習をさせていたのですから大変です。例えば豆料理の写真に「インゲン豆」というラベルがついていたり、複数の品種の犬が数匹写っている写真に「チワワ」と特定の犬の品種のラベルしかついていなかったりと少々データに歪みが生じていました。さらに画像に写っているのは虎なのに、ラベルには「ジャガー」と間違えたラベルがついているものまでありました。

これを聞くと、ImageNet は精度が低すぎるためもう使えないと短絡的に考えがちですが、一方、実際にはそれほど精度の影響を与えていないという考えもあり、「Are we done with ImageNet?」ではいつかの改善案が出されています。それは数十種類のラベルで画像に写っている複数のもの、複雑なものを表現できるようにすることと、ラベルづけを行う作業を1枚の画像につき5人に増やし、ミスを減らして精度を上げる工夫をすることでした。

物としては同一のものでも、ノートパソコン、ラップトップ、モバイルパソコン、モバイルコンピュータ、キーボードなどさまざまな見方、示し方が存在します。よくよく考えるとひとつの写真を説明するのに、あるひとつの言葉だけで済むことは稀で、情報設計(Information Architecture)の世界でも正確なラベリングの問題は、常に議論されている課題です。

一方、コンピュータグラフィックス(CG)の世界では、必ずしも教師あり機械学習だけではない人工知能の活用が行われています。数式や三次元データから画像を描画する方法と、逆にコンピュータビジョン(CV)の世界では画像からそこに映っているもの大きさや三次元形状を読み取るといった双方向の事柄がコンピュータ上で行われています。つまり学習すべきもととなる画像やデータも、機械学習の結果として生み出させる画像の正しさも、コンピュータ内部の画像として扱えるため、ImageNet のような一般の写真を使った方法とは少し異なります。

画像認識のための巨大なデータセットのラベル付けには、ボランティアやその分野を研究する学生の手助け、アマゾンメカニカルターク(※)などの安価な人的リソースが使われています。これら労働集約的なアプローチだけでは正しく画像を認識するには限界があるという考えもあり、そこにあらたなアプローチをもたらしたのが TensorFlow Graphicsの考え方です。

アマゾンメカニカルターク「機械仕掛けのトルコ人」の意味を持つアマゾンウェブサービスの一つ。機械仕掛けの自動チェスマシンの中に実はトルコ人が隠れていたことに由来している。コンピュータプログラムを人間の知能と組み合わせて、コンピュータだけでは不可能な仕事を処理することができるWebサービス。報酬は1セント(約1円)から数ドルまで様々な作業が募集されている。画像認識や画像から何かを探したり分類したり、音声の文字起こしなど人間の方が得意で正確にできる事柄を任せることが多い。2007年の時点で、100以上の国に10万人以上のワーカーと呼ばれる作業者がいる。

Google が推し進める TensorFlow Graphics の目の付け所

2019年5月に開催された開発者向けのイベント Google I/O 2019 でGoogleが中心となって提供する機械学習向けライブラリ TensorFlow の機能のひとつとしてTensorFlow Graphics が発表されました(動画開始より17分あたりから)。

TensorFlow Graphics ソースコード公開サイト(GitHub):https://github.com/tensorflow/graphics
※CopyrightはGoogleですが、オープンソースのライセンスのひとつである Apache 2.0 ライセンスで公開されているため、商用プロダクトに組み込んでの利用も可能。実際に商用プロダクトに組み込んで利用する場合は、Apache 2.0 ライセンスを調べ、正しく理解した上でご利用ください。

TensorFlow Graphics CodeLab (実際にコードを試すことができるサイト):https://colab.research.google.com/github/tensorflow/graphics/


コンピュータグラフィックスの基礎原理として、ジオメトリ(形状)、マテリアル(質感)、ライティング(照明)、カメラ(視線方向)、変換(移動や回転)の組み合わせで映像が描かれます。最近ではこれらの事象はグラフィックス専用ハードウェアで高速に並列計算されて一気に実行される場合もあります。


コンピュータビジョンの基礎原理として、もととなる画像をニューラルネットワークで解析し、ジオメトリ(形状)、マテリアル(質感)ライティング(照明)、カメラ(視線方向)、変換(移動や回転)を解析して抽出します。

つまりコンピュータグラフィックスの映像生成と、映像を解析するコンピュータビジョンでは正反対のことを行なっているのです。例えば映像から正しくジオメトリが抽出できたかどうかは、得られたジオメトリからCG映像を作ってみることで元の画像と一致するのであれば、それが正答だとわかるのです。

これらコンピュータグラフィックスとコンピュータビジョンの世界は、ハリウッド映画の最新VFXを支える技術としてだけでなく、人工知能は人間のいる世界をどうとらえるか? どう認識できるかといったことに密接に関連してきます。例えば自動運転や、火星の陸上探査機など手がかりが映像しかない場合のよりどころとなります。自動運転のための機械学習も黎明期には実写映像を解析し利用していましたが、最近ではCGで作られたバーチャルな都市の中で、学習がなされています。

TensorFlow Graphics ではそれぞれジオメトリ(形状)、マテリアル(質感)ライティング(照明)、カメラ(視線方向)、変換(移動や回転)の段階ごとにCG映像化する流れと、逆に映像からジオメトリ(形状)、マテリアル(質感)ライティング(照明)、カメラ(視線方向)、変換(移動や回転)を抽出する流れを提供しています。映像からジオメトリを抽出する際は映像からだけでなく3Dスキャナ、3Dレーザースキャナなどからの三次元点群から形状を推定する場合もあります。

CG制作のアプローチは、もともと人間がどのように正確に絵画を描画するのか、どのように数学的に映像を表現するのか、それに加えて物理現象をいかにコンピュータ上で再現するのかを追求してきました。TensorFlow Graphics の登場で、人間がとらえられる現象や表現ではない、映像制作の流れそのものを人工知能に委ねることで、未知の、かつとても正確な表現に突入したという実感があります。TensorFlowの活用例としてGraphics 分野はまだまだ発展途上ではありますが、新しいCG/CVの世界に新しい潮流を切り開いたと言えるでしょう。TensorFlow Graphics の登場で期待されているのは下記のような使い方です。

  1. 三次元形状へのCNN(畳み込みニューラルネットワーク)の適応
  2. 球面オブジェクトの輝き具合から周囲の環境を推定
  3. 人間の三次元形状データから、頭や右足といった部位を推定
  4. 映像の視覚的デバッグが可能になることによる評価の最適化
  5. ニューラルネットワークを用いて三次元空間を推定する


大量の点群データから人の体の部位を推定しつつ三次元可視化することで、スキャン収録したデータのアーティファクト(ゴミや歪み)などを素早く見つけることができる。

これからのCG描画の進化への期待

現在は、理想的な画像解析や理想的な画像生成のために大量の学習データと機械学習が活用されています。これらのアプローチは徐々に精度も高くなり、さまざまな分野で実用化されてきています。個人的な体験では、ごく普通の街のパン屋さんで、パンの画像を解析して料金を自動入力するレジで機械学習が使われている様子をみて驚きました。研究にとどまらない人工知能の浸透が実感されてきます(ツナサンドとコンビーフサンド、クリームパンとジャムパンを見分けるのが難しいように、パンは見た目が同じように見えるわりに、一個一個価格が異なるため、レジ打ちが面倒な商品のひとつ)。

さまざまな事前現象がCGで生成できるようになり、画像に映っている様々な物体を読み取ることができるように思えますが、
まだまだCG描画が難しい自然現象や人間の表現、まだまだ解析不能な複雑な画像など、この分野における課題は無限で、課題と研究対象、実用化の道のりは、まだまだ多岐に広がっています。現状を見つめ直し、さまざまな課題を見出しながら、解くべき課題に挑戦してゆくのが、これからの人工知能研究なのかもしれません。

本連載の今後の予定:「CGへの扉」では、単なるAIの話題とは少し異なり、CG/VFX, アートの文脈から話題を切り取り紹介していきます。映像制作の現場におけるAI活用や、AIで価値が高まった先進的なツール、これからの可能性を感じさせるような話題、テクノロジーの話題にご期待ください。何か取り上げて欲しいテーマやご希望などがございましたら、ぜひ編集部までお知らせください。

CGへの扉:

Vol.1:CG/VFXにおける人工知能の可能性と、その限界

Vol.2:なめらかなキャラクタアニメーションと、ディープラーニングの役目

Vol.3:CGとAIの蜜月が今まで不可能だった映像を生みだす

Vol.4:CG/VFX制作に欠かせなくなったマシーンラーニングの勘所

Vol.5:SIGGRAPH 2019に見るCG研究と機械学習

Vol.6:Facebookが取り組むVRとAIのアプローチ

Vol.7:AIによる差別やバイアスを避ける取り組み“PAIR”

Vol.8:一流オークションハウスも注目するアートとAIの関係性

Vol.9:現実の課題を解決するCGとAIの相互作用 #SIGGRAPHAsia2019

Vol.10:老齢とは無縁、De-Aging技術の台頭

Vol.11:動き、ダンスに新しい要素を加えるAIの役目

Vol.12:AIのおかげで映像の拡大やノイズ除去が高品質に

Vol.13:AIのクリエイティブとクリエイティビティ再考

Vol.14:AIが生み出す顔と人間の表情

Vol.15:撮影に革新をもたらすAIによる照明

Vol.16:バーチャル開催SIGGRAPH論文を先取り

Contributor:安藤幸央

RELATED ARTICLE関連記事

CGへの扉 Vol.47:Gen-1登場。映像が映像を作る時代に

2023.2.14アート

CGへの扉 Vol.47:Gen-1登場。映像が映像を作る時代に

CGへの扉 Vol.9:現実の課題を解決するCGとAIの相互作用 #SIGGRAPHAsia2019

2019.12.17アート

CGへの扉 Vol.9:現実の課題を解決するCGとAIの相互作用 #SIGGRA...

CGへの扉 Vol.33:AIの必然性 #SIGGRAPHAsia2021 レポート

2021.12.24アート

CGへの扉 Vol.33:AIの必然性 #SIGGRAPHAsia2021 レホ...

RANKING注目の記事はこちら