モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CGCGへの扉安藤幸央機械学習月刊エンタメAIニュースディープラーニング生成AI河合律子吉本幸記OpenAIGAN音楽NVIDIAGoogleChatGPT強化学習三宅陽一郎グーグルニューラルネットワークStable Diffusion森川幸人大規模言語モデルDeepMindマイクロソフトシナリオLLMQAAIと倫理人工知能学会GPT-3モリカトロン自然言語処理Facebook大内孝子倫理映画著作権アートゲームプレイAIキャラクターAI敵対的生成ネットワークルールベースSIGGRAPHスクウェア・エニックスモリカトロンAIラボインタビュー画像生成MinecraftNPCNFTプロシージャルMidjourneyデバッグロボットDALL-E2音楽生成AIStyleGAN遺伝的アルゴリズム画像生成AIファッション自動生成ディープフェイクVFXAdobeテストプレイメタAIアニメーションテキスト画像生成深層学習CEDEC2019MicrosoftデジタルツインメタバースVR小説ボードゲームDALL-ECLIPビヘイビア・ツリーマンガCEDEC2021CEDEC2020ゲームAI作曲不完全情報ゲームロボティクスナビゲーションAIマインクラフト畳み込みニューラルネットワークtoioスポーツエージェントGDC 2021マルチモーダル汎用人工知能JSAI2022バーチャルヒューマンNVIDIA OmniverseGDC 2019マルチエージェントCEDEC2022MetaAIアート3DCGStability AIメタデジタルヒューマン懐ゲーから辿るゲームAI技術史教育ジェネレーティブAIプロンプトGPT-4栗原聡手塚治虫CNNNeRFDALL-E 3BERTMicrosoft Azure動画生成AIUnityOmniverseJSAI2023ELSI鴫原盛之HTN階層型タスクネットワークソニーRed RamJSAI2020GTC20233DマーケティングTensorFlowインタビューブロックチェーンイベントレポート対話型エージェントAmazonメディアアートDQN合成音声水野勇太アバターUbisoftGenvid TechnologiesガイスターStyleGAN2ARGTC2022SIGGRAPH ASIANetflixJSAI2021東京大学はこだて未来大学Bard研究シムピープル世界モデルMCS-AI動的連携モデルモーションキャプチャーTEZUKA2020CEDEC2023AGIテキスト生成インディーゲームElectronic Arts音声合成メタデータGDC Summerイーロン・マスクStable Diffusion XLCM森山和道アストロノーカキャリア模倣学習eスポーツスタンフォード大学アーケードゲームテニスサイバーエージェントトレーディングカード音声認識類家利直eSports高橋力斗BLUE PROTOCOLシーマンaiboモリカトロン開発者インタビューチャットボットGeminiブラック・ジャックワークショップEpic GamesAIロボ「迷キュー」に挑戦AWS徳井直生クラウド斎藤由多加AlphaZeroTransformerGPT-2rinnaAIりんなカメラ環世界中島秀之PaLMGitHub Copilot哲学ベリサーブPlayable!GPT-3.5ハリウッド理化学研究所Gen-1SoraSFテキスト画像生成AI松尾豊AIQVE ONEデータマイニング現代アートDARPAドローンシムシティゲームエンジンImagenZorkバイアスマーダーミステリーASBSぱいどんアドベンチャーゲームAI美空ひばり手塚眞バンダイナムコ研究所スパーシャルAIELYZANEDO広告FSM-DNNMindAgentLEFT 4 DEAD通しプレイ論文OpenAI Five本間翔太馬淵浩希CygamesAudio2Faceピクサープラチナエッグイーサリアム効果音ボエダ・ゴティエビッグデータ中嶋謙互Amadeus Codeデータ分析MILENVIDIA ACEナラティブNVIDIA RivaOmniverse ReplicatorWCCFレコメンドシステムNVIDIA DRIVE SimWORLD CLUB Champion FootballNVIDIA Isaac Simセガ柏田知大軍事田邊雅彦Google I/Oトレカ慶應義塾大学Max CooperGPTDisneyFireflyPyTorch京都芸術大学ChatGPT4眞鍋和子バンダイナムコスタジオヒストリアAI Frog Interactive新清士SIE大澤博隆SFプロトタイピング齊藤陽介成沢理恵お知らせMagic Leap OneTencentサッカー宮本茂則バスケットボールTikTokSuno AItext-to-imageサルでもわかる人工知能text-to-3DVAEDreamFusionTEZUKA2023リップシンキングRNNUbisoft La Forge自動運転車知識表現ウォッチドッグス レギオンVTuberIGDA立教大学秋期GTC2022市場分析フォートナイトどうぶつしょうぎRobloxジェイ・コウガミ音楽ストリーミングMIT野々下裕子Adobe MAXマシンラーニング村井源5GMuZeroRival Peakpixivオムロン サイニックエックスGPTs電気通信大学対話エンジン稲葉通将ポケモン3Dスキャン橋本敦史リトル・コンピュータ・ピープルCodexシーマン人工知能研究所コンピューティショナル・フォトグラフィーPreferred Networksゴブレット・ゴブラーズ絵画Open AI3D Gaussian SplattingMicrosoft DesignerアップルイラストシミュレーションSoul Machines柿沼太一完全情報ゲームバーチャルキャラクター坂本洋典釜屋憲彦ウェイポイントLLaMAパス検索Hugging Face対談藤澤仁生物学GTC 2022xAIApple Vision Pro画像認識SiemensストライキStyleCLIPDeNAVoyager長谷洋平GDC 2024クラウドコンピューティングmasumi toyotaIBM宮路洋一OpenSeaGDC 2022SNSTextWorldEarth-2BingMagentaYouTube音声生成AIELYZA PencilScenarioSIGGRAPH2023AIピカソGTC2021AI素材.comCycleGANテンセントAndreessen HorowitzQA Tech Night松木晋祐NetHack下田純也桑野範久キャラクターモーションControlNet音源分離NBAフェイクニュースユニバーサルミュージックRPG法律Web3SIGGRAPH 2022レベルデザインDreamerV3AIボイスアクターUnreal Engine南カリフォルニア大学NVIDIA CanvasGPUALife人工生命オルタナティヴ・マシンサム・アルトマンサウンドスケープLaMDATRPGマジック:ザ・ギャザリングAI Dungeonゲーム背景アパレル不気味の谷ナビゲーションメッシュデザイン高橋ミレイ深層強化学習松原仁松井俊浩武田英明フルコトELYZA DIGEST建築西成活裕ハイブリッドアーキテクチャApex LegendsELIZA群衆マネジメントライブポートレイトNinjaコンピュータRPGライブビジネスWonder StudioAdobe Max 2023アップルタウン物語新型コロナ土木KELDIC周済涛BIMBing Chatメロディ言語清田陽司インフラBing Image CreatorゲームTENTUPLAYサイバネティックスMARVEL Future FightAstro人工知能史Amazon BedrockAssistant with BardタイムラプスEgo4DAI哲学マップThe Arcadeバスキア星新一X.AISearch Generative Experience日経イノベーション・ラボStyleGAN-XLX Corp.Dynalang敵対的強化学習StyleGAN3TwitterVLE-CE階層型強化学習GOSU Data LabGANimatorXホールディングスWANNGOSU Voice AssistantVoLux-GANMagiAI Act竹内将SenpAI.GGProjected GANEUMobalyticsSelf-Distilled StyleGANSDXLArs ElectronicaニューラルレンダリングRTFKTAI規制岡島学AWS SagemakerPLATONIKE欧州委員会映像セリア・ホデント形態素解析frame.ioClone X欧州議会UXAWS LambdaFoodly村上隆欧州理事会誤字検出MusicLM認知科学中川友紀子Digital MarkAudioLMゲームデザインSentencePieceアールティSnapchatMusicCapsLUMINOUS ENGINEクリエイターコミュニティAudioCraftLuminous ProductionsBlenderBot 3バーチャルペットパターン・ランゲージ竹村也哉Meta AINVIDIA NeMo ServiceMubertちょまどマーク・ザッカーバーグヴァネッサ・ローザMubert RenderGOAPWACULVanessa A RosaGen-2Adobe MAX 2021陶芸Runway AI Film Festival自動翻訳Play.htPreViz音声AIAIライティングLiDARCharacter-LLMOmniverse AvatarAIのべりすとPolycam復旦大学FPSQuillBotdeforumChat-Haruhi-Suzumiyaマルコフ決定過程NVIDIA MegatronCopysmith涼宮ハルヒNVIDIA MerlinJasperハーベストEmu VideoNVIDIA MetropolisForGamesNianticパラメータ設計ゲームマーケットペリドットバランス調整岡野翔太Dream Track協調フィルタリング郡山喜彦Music AI Tools人狼知能テキサス大学ジェフリー・ヒントンLyriaGoogle I/O 2023Yahoo!知恵袋AlphaDogfight TrialsAI Messenger VoicebotインタラクティブプロンプトAIエージェントシミュレーションOpenAI Codex武蔵野美術大学StarCraft IIHyperStyleBingAI石渡正人Future of Life InstituteRendering with Style手塚プロダクションIntel林海象LAIKADisneyリサーチヴィトゲンシュタインPhotoshop古川善規RotomationGauGAN論理哲学論考Lightroom大規模再構成モデルGauGAN2CanvaLRMドラゴンクエストライバルズ画像言語表現モデルObjaverse不確定ゲームSIGGRAPH ASIA 2021PromptBaseBOOTHMVImgNetDota 2モンテカルロ木探索ディズニーリサーチpixivFANBOXOne-2-3-45Mitsuba2バンダイナムコネクサス虎の穴3DガウシアンスプラッティングソーシャルゲームEmbeddingワイツマン科学研究所ユーザーレビューFantiaワンショット3D生成技術GTC2020CG衣装mimicとらのあなNVIDIA MAXINEVRファッションBaidu集英社FGDC淡路滋ビデオ会議ArtflowERNIE-ViLG少年ジャンプ+Future Game Development ConferenceグリムノーツEponym古文書ComicCopilot佐々木瞬ゴティエ・ボエダ音声クローニング凸版印刷コミコパGautier Boeda階層的クラスタリングGopherAI-OCRゲームマスター画像判定Inowrld AIJulius鑑定ラベル付けMODAniqueTPRGOxia PalusGhostwriter中村太一バーチャル・ヒューマン・エージェントtoio SDK for UnityArt RecognitionSkyrimエグゼリオクーガー田中章愛実況パワフルサッカースカイリムCopilot石井敦銭起揚NHC 2021桃太郎電鉄RPGツクールMZComfyUI茂谷保伯池田利夫桃鉄ChatGPT_APIMZserial experiments lainGDMC新刊案内パワサカダンジョンズ&ドラゴンズAI lainマーベル・シネマティック・ユニバースコナミデジタルエンタテインメントOracle RPGPCGMITメディアラボMCU岩倉宏介深津貴之PCGRLアベンジャーズPPOxVASynthDungeons&Dragonsマジック・リープDigital DomainMachine Learning Project CanvasLaser-NVビートルズMagendaMasquerade2.0国立情報学研究所ザ・ビートルズ: Get BackノンファンジブルトークンDDSPフェイシャルキャプチャー石川冬樹MERFDemucsスパコンAlibaba音楽編集ソフト里井大輝KaggleスーパーコンピュータVQRFAdobe Audition山田暉松岡 聡nvdiffreciZotopeAssassin’s Creed OriginsAI会話ジェネレーターTSUBAME 1.0NeRFMeshingRX10Sea of ThievesTSUBAME 2.0LERFMoisesGEMS COMPANYmonoAI technologyLSTMABCIマスタリングモリカトロンAIソリューション富岳レベルファイブ初音ミクOculusコード生成AISociety 5.0リアム・ギャラガー転移学習テストAlphaCode夏の電脳甲子園グライムスKaKa CreationBaldur's Gate 3Codeforces座談会BoomyVOICEVOXCandy Crush Saga自己増強型AIジョン・レジェンドGenie AISIGGRAPH ASIA 2020COLMAPザ・ウィークエンドSIGGRAPH Asia 2023ADOPNVIDIA GET3DドレイクC·ASEデバッギングBigGANGANverse3DFLAREMaterialGANダンスグランツーリスモSPORTAI絵師エッジワークスMagicAnimateReBeLグランツーリスモ・ソフィーUGC日本音楽作家団体協議会Animate AnyoneGTソフィーPGCFCAインテリジェントコンピュータ研究所VolvoFIAグランツーリスモチャンピオンシップVoiceboxアリババNovelAIさくらインターネットDreaMovingRival PrakDGX A100NovelAI DiffusionVISCUITぷよぷよScratchユービーアイソフトWebcam VTuberモーションデータスクラッチ星新一賞大阪公立大学ビスケット北尾まどかHALOポーズ推定TCGプログラミング教育将棋メタルギアソリッドVメッシュ生成KLabFSMメルセデス・ベンツQRコードVALL-EMagic Leap囲碁Deepdub.aiナップサック問題Live NationEpyllionデンソーAUDIOGEN汎用言語モデルWeb3.0マシュー・ボールデンソーウェーブEvoke MusicAIOpsムーアの法則原昌宏AutoFoleySpotifyスマートコントラクト日本機械学会Colourlab.AiReplica Studioロボティクス・メカトロニクス講演会ディズニーamuseChitrakarQosmoAdobe MAX 2022トヨタ自動車Largo.ai巡回セールスマン問題かんばん方式Cinelyticジョルダン曲線メディアAdobe ResearchTaskade政治Galacticaプロット生成Pika.artクラウドゲーミングがんばれ森川君2号AI Filmmaking Assistant和田洋一リアリティ番組映像解析FastGANStadiaジョンソン裕子セキュリティ4コママンガAI ScreenwriterMILEsNightCafe東芝デジタルソリューションズ芥川賞インタラクティブ・ストリーミングLuis RuizSATLYS 映像解析AI文学インタラクティブ・メディア恋愛PFN 3D ScanElevenLabsタップル東京工業大学HeyGenAbema TVLudo博報堂After EffectsNECラップPFN 4D Scan絵本木村屋SIGGRAPH 2019ArtEmisZ世代DreamUp出版GPT StoreAIラッパーシステムDeviantArtAmmaar Reshi生成AIチェッカーWaifu DiffusionStoriesユーザーローカルGROVERプラスリンクス ~キミと繋がる想い~元素法典StoryBird九段理江FAIRSTCNovel AIVersed東京都同情塔チート検出Style Transfer ConversationProlificDreamerオンラインカジノRCPUnity Sentis4Dオブジェクト生成モデルRealFlowRinna Character PlatformUnity MuseAlign Your GaussiansiPhoneCALACaleb WardAYGDeep Fluids宮田龍MAV3DMeInGameAmelia清河幸子ファーウェイAIGraphブレイン・コンピュータ・インタフェース西中美和4D Gaussian SplattingBCIGateboxアフォーダンス安野貴博4D-GSLearning from VideoANIMAKPaLM-SayCan斧田小夜Glaze予期知能逢妻ヒカリ宮本道人WebGlazeセコムLLaMA 2NightShadeユクスキュルバーチャル警備システムCode as PoliciesSpawningカント損保ジャパンCaPHave I Been Trained?CM3leonFortnite上原利之Stable DoodleUnreal Editor For FortniteドラゴンクエストエージェントアーキテクチャアッパーグラウンドコリジョンチェックT2I-AdapterXRPAIROCTOPATH TRAVELER西木康智VolumetricsOCTOPATH TRAVELER 大陸の覇者山口情報芸術センター[YCAM]AIワールドジェネレーターアルスエレクトロニカ2019品質保証YCAM日本マネジメント総合研究所Rosebud AI GamemakerStyleRigAutodeskアンラーニング・ランゲージLayer逆転オセロニアBentley Systemsカイル・マクドナルドLily Hughes-RobinsonCharisma.aiワールドシミュレーターローレン・リー・マッカーシーColossal Cave Adventure奥村エルネスト純いただきストリートH100鎖国[Walled Garden]​​プロジェクトAdventureGPT調査齋藤精一大森田不可止COBOLSIGGRAPH ASIA 2022リリー・ヒューズ=ロビンソンMeta Quest高橋智隆DGX H100VToonifyBabyAGIIPロボユニザナックDGX SuperPODControlVAEGPT-3.5 Turbo泉幸典仁井谷正充変分オートエンコーダーカーリング強いAIロボコレ2019Instant NeRFフォトグラメトリウィンブルドン弱いAIartonomous回帰型ニューラルネットワークbitGANsDeepJoin戦術分析ぎゅわんぶらあ自己中心派Azure Machine LearningAzure OpenAI Serviceパフォーマンス測定Lumiere意思決定モデル脱出ゲームDeepLIoTUNetHybrid Reward Architectureコミュニティ管理DeepL WriteProFitXImageFXウロチョロスSuper PhoenixWatsonxMusicFXProject MalmoオンラインゲームAthleticaTextFX気候変動コーチングProject Paidiaシンギュラリティ北見工業大学KeyframerProject Lookoutマックス・プランク気象研究所レイ・カーツワイル北見カーリングホールAppleWatch Forビョルン・スティーブンスヴァーナー・ヴィンジ画像解析Gemini 1.5気象モデルRunway ResearchじりつくんAI StudioLEFT ALIVE気象シミュレーションMake-A-VideoNTT SportictVertex AI長谷川誠ジミ・ヘンドリックス環境問題PhenakiAIカメラChat with RTXBaby Xカート・コバーンエコロジーDreamixSTADIUM TUBESlackロバート・ダウニー・Jr.エイミー・ワインハウスSDGsText-to-ImageモデルPixelllot S3Slack AIソフトバンクPokémon Battle Scopeダフト・パンクメモリスタAIスマートコーチポケットモンスターGlenn MarshallkanaeruThe Age of A.I.Story2Hallucination音声変換Latitude占いレコメンデーションJukeboxDreambooth行動ロジック生成AIVeap Japanヤン・ルカンConvaiEAPneoAIPerfusionNTTドコモSIFT福井千春DreamIconニューラル物理学EmemeDCGAN医療mign毛髪GenieMOBADANNCEメンタルケアstudiffuse荒牧英治汎用AIエージェント人事ハーバード大学Edgar Handy中ザワヒデキAIファッションウィーク研修デューク大学大屋雄裕インフルエンサー中川裕志Grok-1mynet.aiローグライクゲームAdreeseen HorowitzMixture-of-Experts東京理科大学NVIDIA Avatar Cloud EngineMoE人工音声NeurIPS 2021産業技術総合研究所Replica StudiosClaude 3リザバーコンピューティングSmart NPCsClaude 3 Haikuプレイ動画ヒップホップ対話型AIモデルRoblox StudioClaude 3 SonnetソニーマーケティングPromethean AIClaude 3 Opusサイレント映画もじぱnote森永乳業環境音暗号通貨note AIアシスタントMusiioC2PAFUZZLEKetchupEndelゲーミフィケーションAlterationAI NewsTomo Kihara粒子群最適化法Art SelfiePlayfool進化差分法オープンワールドArt TransferSonar遊び群知能下川大樹AIFAPet PortraitsSonar+D​​tsukurunウィル・ライト高津芳希P2EBlob Opera地方創生大石真史クリムトDolby Atmos吉田直樹BEiTStyleGAN-NADASonar Music Festival素材DETRライゾマティクスSIMASporeクリティックネットワーク真鍋大度OpenAI JapanデノイズUnity for Industryアクターネットワーク花井裕也Voice Engine画像処理DMLabRitchie HawtinCommand R+SentropyGLIDEControl SuiteErica SynthOracle Cloud InfrastructureCPUDiscordAvatarCLIPAtari 100kUfuk Barış MutluGoogle WorkspaceSynthetic DataAtari 200MJapanese InstructBLIP AlphaUdioCALMYann LeCun日本新聞協会立命館大学プログラミング鈴木雅大AIいらすとや京都精華大学ソースコード生成コンセプトアートAI PicassoTacticAIGMAIシチズンデベロッパーSonanticColie WertzEmposyNPMPGitHubCohereリドリー・スコットAIタレントFOOHウィザードリィMCN-AI連携モデル絵コンテAIタレントエージェンシーGPT-4oUrzas.aiストーリーボードmodi.aiProject Astra介護大阪大学BitSummitGoogle I/O 2024西川善司並木幸介KikiBlenderBitSummit Let’s Go!!Gemma 2サムライスピリッツ森寅嘉Zoetic AIVeoゼビウスSIGGRAPH 2021ペット感情認識ストリートファイター半導体Digital Dream LabsPaLM APIデジタルレプリカ音声加工Topaz Video Enhance AICozmoMakerSuiteGOT7マルタ大学DLSSタカラトミーSkebsynthesia田中達大山野辺一記NetEaseLOVOTDreambooth-Stable-DiffusionHumanRFInworld AI大里飛鳥DynamixyzMOFLINActors-HQMove AIRomiGoogle EarthSAG-AFTRAICRA2024U-NetミクシィGEPPETTO AIWGAIEEE13フェイズ構造ユニロボットStable Diffusion web UIチャーリー・ブルッカー大規模基盤モデルADVユニボPoint-EToroboXLandGato岡野原大輔東京ロボティクスAI model自己教師あり学習インピーダンス制御DEATH STRANDINGAI ModelsIn-Context Learning(ICL)深層予測学習Eric Johnson汎用強化学習AIZMO.AILoRA日立製作所MOBBY’Sファインチューニング早稲田大学Oculus Questコジマプロダクションロンドン芸術大学モビーディックグランツーリスモ尾形哲也生体情報デシマエンジンGoogle Brainダイビング量子コンピュータAIRECSound Controlアウトドアqubit汎用ロボット写真SYNTH SUPERAIスキャニングIBM Quantum System 2オムロンサイニックエックス照明Maxim PeterKarl Sims自動採寸北野宏明ViLaInJoshua RomoffArtnome3DLOOKダリオ・ヒルPDDLハイパースケープICONATESizerジェン・スン・フアンニューサウスウェールズ大学山崎陽斗ワコールHuggingFaceClaude Sammut立木創太スニーカーStable Audioオックスフォード大学浜中雅俊UNSTREET宗教Lars Kunzeミライ小町Newelse仏教杉浦孔明テスラ福井健策CheckGoodsコカ・コーラ田向権GameGAN二次流通食品VASA-1パックマンTesla Bot中古市場Coca‑Cola Y3000 Zero SugarVoxCeleb2Tesla AI DayWikipediaDupe KillerCopilot Copyright CommitmentAniTalkerソサエティ5.0Sphere偽ブランドテラバース上海大学SIGGRAPH 2020バズグラフXaver 1000配信京都大学ニュースタンテキ養蜂立福寛東芝Beewiseソニー・ピクチャーズ アニメーション音声解析DIB-R倉田宜典フィンテック感情分析投資Fosters+Partners周 済涛韻律射影MILIZEZaha Hadid Architectsステートマシン韻律転移三菱UFJ信託銀行ディープニューラルネットワーク

【CEDEC2019】AIは今どこまでゲームのデバッグをできるのか?

2019.9.30モリカトロン

【CEDEC2019】AIは今どこまでゲームのデバッグをできるのか?

ゲーム開発におけるAIの活用で、今、一番注目されているのは「QA(品質管理)」分野です。これまでどうしても人手に頼らざるを得なかったデバッグを、AIを使って効率化しようと各社が開発を推進しています。モリカトロンが進める”QAのためのAI”は今、何をどこまでできるようになっているのでしょうか?

CEDEC2019で行われた、本城嘉太郎氏(モリカトロン代表取締役社長)による注目のセッション「AIにゲームをデバッグさせることは出来るのか? 〜ゲームAI専門会社モリカトロンの挑戦〜」の内容をご紹介します。

モリカトロンのQA事業の全体像

セッションは大盛況で立ち見も入りきらないほど

もともとサーバエンジニアとしてコンシューマーゲーム開発に長く携わってきた本城嘉太郎氏は、リアルタイム通信ソリューション「モノビットエンジン」を提供するモノビットの代表取締役社長でもあります。2018年に日本のゲーム業界もいよいよAIを無視できなくなったということで、森川幸人氏との共同代表という形でモリカトロン株式会社を立ち上げました。

モリカトロンでは、キャラクターAI、ゲームのバランス調整、ステージのフィールド生成などのゲーム用AI開発プラントを、大手ゲームメーカーと組んで共同開発しています。そして、もうひとつ事業として力を入れている分野がQAです。

まずは、こうした立ち位置のモリカトロンがなぜQAをやるのかという話から。たとえば、「キャラクターに、ここでこう動いてほしい」という要望に対応するには、ディープラーニングというアプローチでは細かい制御が難しい場合があります。そもそもAIが必要ないゲームも多数あります。一方、昨今のゲームの大規模化でQAのコストは莫大になる一方です。QAをどう自動化し、効率化するかが業界的に大きなテーマになっています。つまり、どんなゲームでもQAは必要で、そこにAIを投入することで一番業界に貢献できるのではないか。それがモリカトロンがQA事業を始める動機でした。

共同研究を色々な会社とやらせていただく中で、このすごい技術をさらに業界全体に発展させることはできないかと考えました。そして、一番求められているAIの使い方はデバッグだと思い至りました。ただ、そのときに単にAIツールを作ってそれを販売すればいいのかというと、そうではありません。(本城氏)

こうしてAI技術を中心に据えたQAサービスを展開することになるわけですが、事業の特徴として本城氏は次の4つの点をあげます。

  1. 誰でも簡単に発注できる
  2. AIだけに頼らず、人の力をサポートする形でAIを導入する
  3. AIツールは外部提供せず、社内利用に限定
  4. QAの人的アプローチでも最高を目指す

まずは、誰でも簡単に既存のデバッグ会社と同じように発注でき、後はモリカトロンでAIを使って自動化する体制にしました。また、AIだけに頼らない、人の力をサポートするような形にもしてあります。というのも、現時点のAIに、人と同じようにゲームをプレイしてデバッグさせるのは相当ハードルが高いからです。プロデューサーの立場として考えたとき、「AIだけを使ってデバッグできます」と言われてしまうと逆に不安になりかねません。まずは人を中心にすえた上で、AIで人をサポートすることによって工数を削減するという現実的な路線を採りました。

3つ目は、外部提供せず社内利用に限定すること。これはモノビットエンジンの経験からで、やはりツールには使いこなすための知識やサポートが必要になります。特に、「AI」と「デバッグ」それぞれを考えてみても、トレーニングとセットでなければ外部提供は難しいでしょう。そして4つ目は人的アプローチ。AIだけに頼らない、人がデバッグするということにしっかりフォーカスして、クオリティを上げていくということです。

モリカトロンのQA事業の中で人によるデバッグの位置づけに比重が大きいのが分かります。これは、現時点では人のほうが圧倒的にバグを見つけることができるから。まずは人をサポートするという所から始めています。

モリカトロンが目指す進化のイメージ

本城氏はモリカトロンが進めるQA事業を、最後発のテスト会社ならではのいいとこ取りだと言います。コンシューマーゲームの時代のテストは、とにかく人海戦術でバグを見つけるというものでした。この当時からやっている開発会社の多くは自分なりの考えを持ってバグを見つけだす「テスト職人」をたくさん抱えています。そして携帯電話、スマートフォンの時代になると、テストしなければならない端末が複数台になるため、テスト項目、運用計画、ユーザーレビューなどの作成が、よりシステマチックに求められるようになります。

テスト分野における業界のニーズは時代とともに変化してきた

これはどちらも一長一短です。前者の場合は「ここ、テストしていないんですか?」といった抜け漏れも発生しやすく、後者の場合はテスターがテスト項目をチェックすればいいと思ってしまうため、項目に挙がっていない所はバグが残ってしまいがちです。つまり、人海戦術からテスト戦略提案へと業界ニーズが変化してはいても、旧来型のデバッグ手法も必要とされているのです。

このような背景からモリカトロンは、テスト職人もいて、かつテスト設計もでき、加えてQAエンジニアや自動化AIエンジニアも投入することで、すべてを兼ね備えた最強のデバッグサービスを作りました。具体的なモリカトロンのQAサービスのフローは、次のイメージです。一般的なQAサービスの場合、同じ人が担当し続けますが、モリカトロンの場合はQAエンジニアが入って自動化できる所を探り、サポートを行います。

一般的なQAサービスとモリカトロンのQAサービスの違い

テスト自動化ツール「MorikaTester」

さらに、モリカトロンQAツールについても紹介がありました。まず「MorikaTester」、これはテスト自動化ツールです。デバイス画面をキャプチャーして、スクリプトコマンドに登録された画像とマッチングを行い、スクリプトコマンドを実行するというものです。一般的な画像マッチングを行うRPAツールです。NetEase社がOSSとして無償公開している自動テストツール「AirtestIDE」をベースに、機能追加などを行い、MorikaTesterとして再構築したもので、仕様的には、コードはPyhton3.0系、OpenCVを使って画像認識を行います。

画面を認識し、画像マッチングでボタンを押したり、状況を判断して自動的にゲームを進められる所まで作っています。途中でスクリーンショットを撮ったりチェック項目がOKだったら、その結果をExcelのシートに書き込むレポート機能も実装されています。一度スクリプトを組んでおけば、周回プレイも可能です。(本城氏)

MorikaTesterの仕組み

最大の特徴は、テスターの人たちが使うという前提で、コードに詳しくなくとも直感的に使えるようになっている点です。表示した画面から該当箇所をスクリーンショットで保存しテストの内容を登録すれば、プログラムコード内にマッチング用の画像が取り込まれ、自動化することができます。実際、モリカトロン社内でも、アルバイトで応募してきたテスターの人たちに使ってもらい、彼らが自動化できる所を登録して自動化するということが行われています。

ボタン操作でテストコマンドを登録することができる

テスト自動化の目的は、従来の人的テストに加えて自動化テストの導入によって効率化し、テスト範囲を広げること。さらにテスト工数と人による単純なミスの削減です。では、実戦投入した結果はどうでしょうか。モリカトロンでは、実際に自動化テストのスクリプトを作成してテストを2回実行し、工数を算出しています。

対象にしたのは、いわゆる「シナリオテスト」と呼ばれる、一般的なゲームタイトルをデバッグするときに行うテストです。全テスト項目数15,310のそれぞれを検証し、

(1)完全に自動化できるもの

(2)人が少し介入すれば自動化できるもの

(3) 完全に人の手で検証するもの

を洗い出し、そのうち、(2)の「人が少し介入すれば自動化できるもの」を中心に自動化を行いました。結果として、全項目数15,310項目中およそ40%にあたる、6,180項目が自動化テスト項目となりました。

初回と2回目の工数からシミュレートをした結果は次のとおりです。

 

シナリオテスト回数シミュレーション、人によるテストと自動化テストの比較

人の手によるテストの場合、テスト設計に1日かけ、テスト実行を5日かけ、トータル6日間でテストができました。一方、テストを自動化する場合、テスト設計に1日、自動化できる箇所の抽出にさらに1日、そしてスクリプト化に10日かかりました。さらにテスト実行に3日間、トータルで15日かかりました。これが初回ですが、2倍以上かかっています。

しかし2回目以降の人の手によるテストの場合、テスト設計のメンテナンスに0.5日、テスト実行に5日と、トータルで5.5日。自動化の場合、設計のメンテに0.5日、スクリプトのメンテに0.5日、テスト実行に3日でトータル4日、1.5日分少ないという結果になります。繰り返すことで、7回でちょうど同じ工数になります。30回目までの総工数を比較すると、人の手によるテストでは165日かかる所、自動化すると133日になりました。

現時点で20%程度の削減につながっているといえますが、本城氏はまだまだ自動化というには改良の余地がありそうだと語ります。現状の課題としては、スクリプト生成に時間がかかるため、ここを自動生成できないか取り組んでいます。また、多機種検証を組み込むことで大幅な工数削減が見込めるとして、そこをつなぎ合わせるサービスの開発を進めています。

ただ、今後ゲームが3D化していくにあたって大きな課題もあります。3Dゲームの空間認識においては、奥行きの測定などがあり、その意味を認識させるのが非常に難しいのです。しかも、60分の1秒の間で全部を認識しなければなりません。それに対し、SDKを導入することでゲーム中のデータを取得し、複雑なオートプレイを実現できないかなど、色々な研究をしている所です。

とはいえ、現状でも大人数で同時にプレイするようなゲームのデバッグには大きな効果があります。自動化テストツールでスクリプトを実行するため、1人が複数端末操作できるからです。たとえば、100人が同時に遊ぶゲームのデバッグを従来のデバッグ会社に普通にお願いすると、「1日100人」という見積もりになりますが、自動化テストツールを使うことによって、1人が5端末操作できるので20人、1人が10端末操作すれば10人で足ります。

また、サーバの監視サービスを提供するビヨンド社との協業も進んでいます。これまではプロセスレベルでの監視のみに留まっていましたが、このツールを使うことによってゲーム内部を監視することができるようになります。これについての詳細は、近々発表できるとのこと

AIの目「MorikaEye」とAIの耳「MorikaEar」

「MorikaEye」は表示チェックサポートツールで、Excelと連携して表示の確認をサポートするツールです。これはQA(テスターの)チームから出たアイディアでした。まずExcelのシートに入ったテスト項目をツールに読み込ませると、ゲーム画面の確認すべきポイントを、あらかじめ作っておいたマスク画像によってハイライトします。確認してOKを押すと自動的に次の項目に行き、またハイライトされている画像が表示されます。マスク機能をオンにすることで、見なければいけない所にフォーカスして表示バグをつぶしていき、NGであればコメントを書くこともできます。テスターが自分で一つひとつを確認していく工程のミスを減らそうというツールです。

マスク機能を使った表示チェック支援ツール、MorikaEye

実際に、MorikaEyeを実戦投入した結果、テストケースの作成時にMorikaEyeを前提としたチェック項目を設計することにより、表示チェックが大幅に効率化しました。また、ヒューマンエラーの発生率が低下、テスト工数見積を削減にもつながっています。現場でも、テンポよくチェックできると好評とのこと。

続いて音声チェックサポートツール「MorikaEar」の説明に移ります。これは翻訳案件のローカライズQAへの活用のために作ったものです。たとえば、アドベンチャーパートのセリフ音声チェック、翻訳された言葉が本当に合っているかを人が聞くだけではなく、音声ファイル自体からマッチングすることによって確認できます。

仕組みとしては、端末から再生されている音声に対してリアルタイムで特徴量マッチングを行い、再生している音声データを類推し、その情報を表示します。

MorikaEar の仕組み

音声が流れている最中でもセリフを特定できます。ただ、これを使うためには事前にゲームで使用している音声データと関連情報のデータベースを作っておく必要があります。これにより、今流れている音声を人の耳だけではなく機械でも抽出することができ、ヒューマンエラーの削減につなげることができます。

その他、モリカトロンではQAツール群として以下のツールを用意しています。

  • MorikaTester(前述で紹介済み)
  • MorikaEye(前述で紹介済み)
  • MorikaEar(前述で紹介済み)
  • MorikaBugReporter
  • MorikaDebugSDK
  • TextChecker
  • MovieReporter
  • AutoMapper
  • PallarelViewer

なぜバグが発生するかを分析する品質管理ツール

モリカトロンでは品質分析で、「テストの出来を測る」と同時に、なぜそのバグが起きているのかという分析も行っています。デバッグ期間が1カ月しかなく、最終段階になってもチェック未項目が数千、数百残っているとき、なぜ残っているのかという話をしても、往々にして理由が分からないものです。品質分析では、そうならないように中身を分析していきます。

まず、不具合の分析の中でデバッグのランクをS、A、B、C、Dと分け、それぞれ何個出てきたかを表示します。それがシステムの不具合なのか、コーディングミスなのか、設定ミスなのか、仕様のとおりなのか、というように細かく分類し、それぞれでどれだけバグができたかを分析します。

例で見ていきます。図の例では、マスター設定ミスがすごく多いというのが一発で分かります。それがテスト進捗に影響しそうだと分かれば、さらに機能別に、そしてデイリーで推移を分析していきます。

ランク別に不具合を分析する(マスター設定ミスが要因となる不具合が多く、64件の検出)
不具合を機能別で分析する(キャラのマスター設定ミスによる不具合が多く、31件検出)

すると、結果的にデバッグ終了時に残った数、その起因する所が明示できます。

テストケースのステータス結果(4月28日と29日に「未実装」「BLOCK」の項目が大量に発生している)

これによって、不具合の発生原因として、「マスター設定のミスが、特にキャラから多く検出されるので、マスター設定の開発のスケジュールがタイト、あるいは担当者のイージーミスが考えられる」と分かります。テスト進捗でも「未実装」「BLOCK」の2つの項目で大きく遅れているので、事前に分かっていれば、スケジュールの組み換えなど、もっと効率的にデバッグするための手当をすることができます。

モリカトロンではただ闇雲にバグをつぶすだけではなく、このように分析をすることによって、ソフト全体のバグの進捗を管理できる体制を作っています。AI開発拠点の他、人的アプローチの部分でも、QAのテスターチームの拠点として新宿テストラボ、京都、神戸、高知と拡大しています。

まだまだAIだけでバグを見つけるのは難しいのが現状です。僕らは表側からバグを見つけ出そうとしているのですが、最近はディープラーニングを使った動画解析系のツールも進化してきています。それを使ったテストにもチャレンジしていますが、なかなか困難です。まずは実戦投入できる所からツールを作っていき、今後もデバッグAIで業界発展に貢献していきたいと考えています。(本城氏)

CEDEC2019 AI関連セッションレポート

AIりんなのボイストレーニングが示す、情動的で人間的な機械学習とは?

汎用型ボードゲームAIの開発に向けたモリカトロンの挑戦

人工知能が敵キャラを育てる! ディープラーニングを使った次世代のゲームAI開発

中島秀之氏 基調講演:環境との相互作用を取り込む予期知能が、機械学習の課題を解決に導く

人工知能にテストプレイを丸投げできるか?

1キロ四方のマップを舞台に地形表現の工夫で新しいゲーム体験を作る

Writer:大内孝子

RELATED ARTICLE関連記事

繰り返しこそが最も効率的な学習法、AIネイティブ世代が「迷キュー」で学んだ強化学習

2024.4.17モリカトロン

繰り返しこそが最も効率的な学習法、AIネイティブ世代が「迷キュー」で学んだ強化学...

インディーゲーム開発の現場でこそAIは役立つ:森川幸人氏講演レポート

2021.9.14モリカトロン

インディーゲーム開発の現場でこそAIは役立つ:森川幸人氏講演レポート

AIと共存する社会におけるゲームを考える:「AIゲーム ワークショップ」レポート

2024.4.05モリカトロン

AIと共存する社会におけるゲームを考える:「AIゲーム ワークショップ」レポート

RANKING注目の記事はこちら