モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
機械学習ディープラーニングCGCGへの扉モリカトロンAIラボインタビュー三宅陽一郎GANCEDEC2019小説ゲームAIスクウェア・エニックス強化学習GDC 2019音楽シナリオVFX映画ニューラルネットワーク遺伝的アルゴリズムデバッグ不完全情報ゲームVRさかき漣薄明のバルドは知っているボードゲームファッションルールベースSIGGRAPHイベントレポートQAキャラクターAIガイスターロボットグーグルメタAIOpenAIAlphaZero深層学習toioビヘイビア・ツリー自動生成研究DeepMindCMAmadeus Codeマルチエージェント音声認識ナビゲーションAIシーマン齊藤陽介お知らせ敵対的生成ネットワークサルでもわかる人工知能ワークショップ知識表現IGDAどうぶつしょうぎマシンラーニングクラウドマイクロソフト藤澤仁AIと倫理宮路洋一GoogleStyleGANNVIDIAスポーツフェイクニュースディープフェイクASBSぱいどんTEZUKA2020汎用人工知能ゲームブロックチェーンOpenAI Five映像ピクサーAdobe作曲ビッグデータアストロノーカナラティブモリカトロンパラメータ設計バランス調整対話型エージェント人狼知能エージェントシミュレーションロボティクスeSportsDota 2ソーシャルゲーム眞鍋和子淡路滋グリムノーツゴティエ・ボエダGautier BoedaJuliusTPRGバーチャル・ヒューマン・エージェントクーガー石井敦茂谷保伯森川幸人成沢理恵マジック・リープMagic Leap Oneノンファンジブルトークン水野勇太里井大輝GEMS COMPANY初音ミク転移学習デバッギングアニメーションリップシンキングUbisoftUbisoft La Forge北尾まどか将棋畳み込みニューラルネットワークナップサック問題ジェイ・コウガミ音楽ストリーミングSpotifyReplica Studioamuse5Gクラウドゲーミング和田洋一Stadia対話エンジン斎藤由多加シーマン人工知能研究所ゴブレット・ゴブラーズSIGGRAPH 2019ARAIりんなアップルiPhoneカメラ完全情報ゲームAIGraph環世界中島秀之予期知能ウェイポイントパス検索ドラゴンクエストPAIR画像認識アルスエレクトロニカ2019DeNA逆転オセロニア長谷洋平奥村エルネスト純齋藤精一高橋智隆ロボユニ泉幸典ロボコレ2019アートぎゅわんぶらあ自己中心派意思決定モデルウロチョロス理化学研究所教育SIGGRAPH ASIAHTN階層型タスクネットワークLEFT ALIVE長谷川誠Baby Xロバート・ダウニー・Jr.YouTubeSFThe Age of A.I.レコメンデーションソニーテンセントMOBA人事研修プロシージャルmynet.ai人工音声プレイ動画NBADARPAドローン群知能ウィル・ライトシムシティシムピープルレベルデザインSporeデノイズ画像処理GPUCPUALife人工生命オルタナティヴ・マシンサウンドスケープGMAITRPGウィザードリィAI Dungeon西川善司サムライスピリッツゼビウスストリートファイター栗原聡山野辺一記大里飛鳥マンガ13フェイズ構造AI美空ひばり手塚治虫手塚眞不気味の谷月刊エンタメAIニュースOculus Quest生体情報

【CEDEC2019】人工知能にテストプレイを丸投げできるか?

2019.9.24ゲーム

【CEDEC2019】人工知能にテストプレイを丸投げできるか?

第三次人工知能ブームのきっかけを作ったディープラーニングが2010年代に普及しはじめて以降、AIは物体認識や音声認識を中心にさまざまな分野で活用されるようになり、その波はゲーム業界にも訪れています。莫大な工数を要するゲームのテストプレイやバランス調整、デバッグを人間に代わってAIがやってくれたなら。開発コストを大幅に削減できることはもちろん、より効率的かつ高品質なゲームコンテンツを担保できるに違いありません。

9月4日から9月6日までパシフィコ横浜で開催されたCEDEC 2019では、ゲーム開発現場におけるAI技術の応用例や活用法に関するセッションが目白押しでした。今回は、その中からグリー株式会社の「機械学習ベースの自動プレイエージェントを用いたバランス設計効率化の追求」というセッションを取材しました。

登壇者は、グリー株式会社Wright Flyer Studios事業本部ゲームデザイナーの福沢嘉琳氏と、開発本部シニアマネージャーの森田想平氏。講演では、同社のスマートフォン向けゲームアプリ『ダンまち〜メモリア・フレーゼ〜』(以下、ダンメモ)におけるバトルコンテンツのバランス調整を効率化するために、自動プレイエージェントの導入を検証したプロジェクトについて語られました。

高難易度コンテンツのバランス調整は職人芸

日本国内で広く普及している近年の一般的なソーシャルゲームと同様に、『ダンメモ』のバトルコンテンツにも自動でコマンドを選択してバトルを進めてくれるオート機能があります。このオート機能をどれだけ有効活用できるかは、バトルコンテンツにおけるゲームバランス次第です。そして、ゲーム開発者が高品質かつ高頻度のコンテンツ提供を継続していくためには、バランス設計の効率化が必要不可欠になってきます。

『ダンメモ』のバトルは、低難易度コンテンツの通常バトルと高難易度コンテンツのボスバトルに大別されます。通常バトルは主に世界観を楽しむためのコンテンツであるため、開発側が想定した適正パーティを用いればオート機能でクリアできるくらいのバランスが適切です。グリーは昨年、CEDEC 2018で「オートプレイによる最適なパラメータシミュレーション ~自動化時代のゲームフレームワークに求められること~」というセッションを発表し、このオート機能を使って高速かつ自動でテストプレイが実施できるシミュレーターを披露しました。これにより、通常バトルにおける工数を大幅に削減できたということです。

一方、ボスバトルでは同様の自動化は通用しません。『ダンメモ』のボスバトルでは、挑戦難易度や生存ターン数、与えたダメージ量に応じてスコアが決定されます。ハイスコアを獲得するには、開発側が想定した適正パーティを用いるだけでなく、状況に合わせた最適な行動が要求されます。当然、テストプレイは膨大な回数を手動で繰り返さなければならず、しかも本作のバランス調整に精通したゲームデザイナーにしか務まりません。この工程を可能な限り少ない工数でスムーズに行いたいというのが、今回の課題です。

自動プレイエージェントがテストプレイを代行

そこでグリーが技術検証しているのが、ボスバトルのテストプレイを代行してくれる自動プレイエージェントの導入です。同社では現在、ルールベースエージェントと機械学習エージェントの2種類について検証しています。

まず、ルールベースエージェントは、ゲームデザイナーがシンプルな行動ルールを定義し、そのままコードに打ち込んだものです。これは想定されるすべての状況にあわせて個別に条件を指定するので、理論的には手動でプレイしている状態と大差はないでしょう。検証の結果でも、ゲームデザイナーが出したハイスコアにかなり近い結果が出せたということです。よって汎用的なルールさえ作成できれば、パーティごとのスコアの比較検証に利用できそうだということでした。しかし、ゲームを完璧に熟知したゲームデザイナーにしかルール作成できないという課題が残ります。

しかも、汎用的なルール作成となると、かなり複雑で困難な作業になります。同じパーティやボスでも、難易度によって行動が変化するからです。現在のターン数やバフの残りターン数、生存しているキャラクターなど、あらゆる情報から複合的に判断できなければいけません。人間のプレイヤーは複数回のプレイをとおしてボスの行動をある程度記憶しているので、過去の経験から未来を予測できますが、ルールベースエージェントに同様の能力を持たせるのは至難の業というわけです。

教師あり学習と強化学習を併用して検証

この課題をクリアできる可能性を秘めているのが、2つ目の機械学習エージェントです。これには教師あり学習と強化学習の2種類の仕組みがあり、それぞれが異なる役割を担っています。教師あり学習は、強化学習を効率期に実施するために、さまざまなパーティレベルや難易度設定に共通の機械学習モデルを学習します。そして、教師あり学習をとおして学習したモデルを個別に最適化していくのが、強化学習の役割です。

教師あり学習とは、与えられたデータを用いてモデルを学習する手法です。この検証では、ルールベースエージェントにおけるプレイログを足し合わせて学習しているとのことでした。プレイログの1行は1ターンに相当し、味方の残りHPや現在のターン数、必殺技ゲージの値、敵と味方のバフおよびデバフ状況などが学習データとして格納されています。これを浅いニューラルネットワークに読み込ませて、各コマンドの選択確率を計算するためのスコアを出力しています。

強化学習は、エージェントが環境から報酬と状態を受け取り、行動を環境に送るというイテレーションを繰り返すことによって、行動選択モデルを学習する手法です。グリーのシステムでは、プレイスコアを報酬として扱い、スコアが高くなるように学習しています。

しかし、強化学習は再現性や過学習、学習速度といった側面で多くの課題が残されており、まだ実運用にはいたっていないようです。それでも強化学習を用いた仕組みが必要なのは、ゲームに新機能が追加された際にバトルのルールが変化したり、新キャラクターが追加された際に新しいスキルが登場したりするたびに、過去ログをもとにした教師あり学習が通用しなくなるからだといいいます。

今回の講演は、2018年にグリーが発表した「オートプレイによる最適なパラメータシミュレーション〜自動化時代のゲームフレームワークに求められること〜」の続編ということで、通常バトルよりも緻密な設計が求められる高難易度のボスバトルコンテンツに対して、強化学習を利用したオートプレイを実装することで、ゲームバランスの調整という重労働の効率化を追求するものでした。ルールベースエージェントでは一定の効果が見られる反面、さらなる汎用性を求めるという点では実用化にはほど遠い印象を受けました。今後の進捗に期待したいところです。

CEDEC2019 AI関連セッションレポート

AIりんなのボイストレーニングが示す、情動的で人間的な機械学習とは?

汎用型ボードゲームAIの開発に向けたモリカトロンの挑戦

人工知能が敵キャラを育てる! ディープラーニングを使った次世代のゲームAI開発

中島秀之氏 基調講演:環境との相互作用を取り込む予期知能が、機械学習の課題を解決に導く

Writer:Ritsuko Kawai / 河合律子

 

RELATED ARTICLE関連記事

ゲームAIは5年後にどこに向かうのか?:若手ゲームAIエンジニア座談会(前編)

2020.2.05ゲーム

ゲームAIは5年後にどこに向かうのか?:若手ゲームAIエンジニア座談会(前編)

発想より技術が先行する時代におけるゲームAIの役割:『ゲームAI技術入門』刊行記念特別対談レポート(後編)

2019.11.20ゲーム

発想より技術が先行する時代におけるゲームAIの役割:『ゲームAI技術入門』刊行記...

ゲーム開発コスト削減の鍵となるのは「外のAI」である:三宅陽一郎氏×森川幸人氏 対談(後編)

2019.5.07ゲーム

ゲーム開発コスト削減の鍵となるのは「外のAI」である:三宅陽一郎氏×森川幸人氏 ...

RANKING注目の記事はこちら