モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CGCGへの扉生成AI安藤幸央吉本幸記月刊エンタメAIニュース河合律子機械学習OpenAILLMディープラーニング大規模言語モデルGoogle音楽グーグルNVIDIAモリカトロン森川幸人GANChatGPT三宅陽一郎DeepMind強化学習Stable Diffusion人工知能学会ニューラルネットワークシナリオQAマイクロソフトAIと倫理GPT-3自然言語処理スクウェア・エニックスSIGGRAPHFacebook倫理大内孝子音楽生成AI映画ルールベースアート著作権キャラクターAINPC3DCG動画生成AIデバッグ敵対的生成ネットワークゲームプレイAIMinecraftモリカトロンAIラボインタビューアニメーションNFT画像生成VFXロボットファッションStyleGANプロシージャルディープフェイクDALL-E2マルチモーダル遺伝的アルゴリズム自動生成テストプレイMidjourneyRed RamAdobeVRメタAIマンガMeta画像生成AIインタビューゲームAI小説ボードゲーム深層学習CEDEC2019toio教育MicrosoftマインクラフトCLIPテキスト画像生成Stability AINeRFGemini不完全情報ゲームビヘイビア・ツリーDALL-ECEDEC2021デジタルツインメタバースPlayable!高橋力斗Sora作曲アストロノーカロボティクスナビゲーションAI畳み込みニューラルネットワークARアップルスポーツ手塚治虫汎用人工知能3D広告CEDEC2020AIアートはこだて未来大学エージェントGDC 2021バーチャルヒューマンメタデジタルヒューマンJSAI2022ELSIプロンプトGPT-4GPT-4oGDC 2019マルチエージェントHTNソニー栗原聡CNNマーケティング懐ゲーから辿るゲームAI技術史鴫原盛之アドベンチャーゲームNVIDIA Omniverse市場分析東京大学CEDEC2022ジェネレーティブAIDALL-E 3言霊の迷宮CM音声認識UbisoftSIGGRAPH ASIA階層型タスクネットワークYouTubeJSAI2020Microsoft AzureUnityインディーゲーム音声合成BERTOmniverseRobloxがんばれ森川君2号AIQVE ONE世界モデルGTC2023JSAI2023電気通信大学AppleJSAI2024ブロックチェーンイベントレポート対話型エージェントシーマン水野勇太ガイスター斎藤由多加SF研究シムシティシムピープルTEZUKA2020スパーシャルAIElectronic ArtsメタデータTensorFlowキャリア模倣学習AmazonDQNSIEアバターGenvid TechnologiesStyleGAN2JSAI2021ZorkMCS-AI動的連携モデルモーションキャプチャーAGI高橋ミレイCygamesサイバーエージェント合成音声モリカトロン開発者インタビュー宮本茂則AWS徳井直生GTC2022NetflixUnreal Engineテキスト生成トレーディングカードメディアアートOpen AIベリサーブGPT-3.5音声生成AI松木晋祐Bardブラック・ジャック村井源稲葉通将マーダーミステリーCEDEC2023RunwayAmadeus Code人狼知能eSportsワークショップクラウドAlphaZeroAIりんなカメラ環世界中島秀之宮路洋一理化学研究所テンセント人事DARPAドローン人工生命ASBSぱいどんAI美空ひばり手塚眞GDC Summer岡島学eスポーツスタンフォード大学テニスBLUE PROTOCOLaibo銭起揚自動運転車TransformerGPT-2哲学現代アートバンダイナムコ研究所ELYZANVIDIA RivaチャットボットEpic GamesrinnaSNS松尾豊データマイニングゲームエンジンImagenバイアスサム・アルトマンデザインNEDO森山和道自動翻訳アーケードゲームセガ類家利直大澤博隆SFプロトタイピングコナミデジタルエンタテインメントtext-to-imagetext-to-3DDreamFusionAIロボ「迷キュー」に挑戦Adobe MAXPreferred NetworksPaLMGitHub CopilotGen-1ControlNet大阪大学建築イーロン・マスクStable Diffusion XLAudio2FaceGoogle I/OFireflyTikTok立教大学KLabLLaMAハリウッドテキスト画像生成AI法律LoRA論文NianticXRApple Vision ProVeoCEDEC2024Runway Gen-3 AlphaスーパーマリオブラザーズWhiskSIGGRAPH Asia 2024GDC 2025Veo 3JSAI2025CEDEC2025OpenAI Fiveピクサービッグデータナラティブ眞鍋和子齊藤陽介成沢理恵お知らせMagic Leap Oneサルでもわかる人工知能リップシンキングUbisoft La Forge知識表現IGDAどうぶつしょうぎジェイ・コウガミ音楽ストリーミングマシンラーニング5G対話エンジンシーマン人工知能研究所ゴブレット・ゴブラーズ完全情報ゲームウェイポイントパス検索藤澤仁画像認識DeNA長谷洋平ぎゅわんぶらあ自己中心派ウロチョロスNBAフェイクニュースウィル・ライトレベルデザインGPUALifeオルタナティヴ・マシンサウンドスケープTRPGAI Dungeonゼビウス不気味の谷写真松井俊浩パックマン通しプレイ本間翔太馬淵浩希中嶋謙互レコメンドシステム軍事PyTorchモンテカルロ木探索バンダイナムコスタジオ田中章愛サッカーバスケットボールVAERNNウォッチドッグス レギオンHALOMITMuZeroRival Peakリトル・コンピュータ・ピープルコンピューティショナル・フォトグラフィー絵画シミュレーション坂本洋典釜屋憲彦生物学StyleCLIPmasumi toyotaTextWorldBingMagentaGTC2021CycleGANNetHackAIボイスアクター南カリフォルニア大学NVIDIA CanvasNetEaseナビゲーションメッシュ深層強化学習ELYZA DIGESTELIZALEFT 4 DEADプラチナエッグイーサリアムボエダ・ゴティエOmniverse ReplicatorNVIDIA DRIVE SimNVIDIA Isaac SimDisneyAI会話ジェネレーターグランツーリスモ・ソフィーVTuberフォートナイトQosmoポケモンCodexSoul Machinesバーチャルキャラクター対談GTC 2022SiemensクラウドコンピューティングOpenSeaGDC 2022Earth-2エコロジーELYZA Pencil医療キャラクターモーションRPGSIGGRAPH 2022LaMDAマジック:ザ・ギャザリング介護松原仁武田英明フルコトデータ分析MILEWCCFWORLD CLUB Champion Football柏田知大田邊雅彦トレカMax Cooper京都芸術大学ラベル付け秋期GTC2022野々下裕子pixivセキュリティ3DスキャンMicrosoft Designerイラスト柿沼太一ScenarioAIピカソAI素材.comAndreessen HorowitzQA Tech Night下田純也桑野範久DreamerV3Blenderゲーム背景Point-EアパレルBIMGPTPhotoshopChatGPT4コミコパTencentTEZUKA2023大阪公立大学オムロン サイニックエックス橋本敦史宮本道人LLaMA 2Hugging FacexAIストライキVoyagerIBMソフトバンクSIGGRAPH2023音源分離ユニバーサルミュージックWeb3BitSummitファインチューニンググランツーリスモ量子コンピュータ北野宏明立福寛FSM-DNNMindAgent効果音NVIDIA ACE慶應義塾大学ヒストリアAI Frog Interactive新清士ComfyUISuno AIKaKa CreationVOICEVOXGPTs3D Gaussian SplattingGDC 2024ポケットモンスターSIMAGemma 2Inworld AIIEEE早稲田大学Apple IntelligenceWWDCWWDC 2024Perplexityくまうた濱田直希ソニー・インタラクティブエンタテインメント遊戯王佐竹空良九州大学伊藤黎Sakana AIByteDanceLINEヤフーDOOMGameNGen社員インタビューMovie GenPlayable!MobilePeridot早瀬悠真Veo 2SONYRazerDeepSeekGDCCube 3DモリカトロンAIコネクトベンチマークHao AI LabClaudeモリカコミックジョージア工科大学MeshyGPT-5Gemini 2.5 Flash ImageEXPO2025大阪・関西万博アトラクチャー中村政義森旭彦ゲーム映像パラメータ設計バランス調整エージェントシミュレーションDota 2ソーシャルゲーム淡路滋グリムノーツゴティエ・ボエダGautier BoedaJuliusTPRGバーチャル・ヒューマン・エージェントクーガー石井敦茂谷保伯マジック・リープノンファンジブルトークン里井大輝GEMS COMPANY初音ミク転移学習デバッギング北尾まどか将棋ナップサック問題SpotifyReplica Studioamuseクラウドゲーミング和田洋一StadiaSIGGRAPH 2019iPhoneAIGraph予期知能ドラゴンクエストPAIRアルスエレクトロニカ2019逆転オセロニア奥村エルネスト純齋藤精一高橋智隆ロボユニ泉幸典ロボコレ2019意思決定モデルLEFT ALIVE長谷川誠Baby Xロバート・ダウニー・Jr.The Age of A.I.レコメンデーションMOBA研修mynet.ai人工音声プレイ動画群知能Sporeデノイズ画像処理CPUGMAIウィザードリィ西川善司サムライスピリッツストリートファイター山野辺一記大里飛鳥13フェイズ構造Oculus Quest生体情報照明山崎陽斗立木創太GameGANソサエティ5.0SIGGRAPH 2020DIB-RApex LegendsNinjaTENTUPLAYMARVEL Future Fightタイムラプスバスキア階層型強化学習WANN竹内将セリア・ホデントUX認知科学ゲームデザインLUMINOUS ENGINELuminous Productionsパターン・ランゲージちょまどFPSマルコフ決定過程協調フィルタリングAlphaDogfight TrialsStarCraft IIFuture of Life InstituteIntelLAIKARotomationドラゴンクエストライバルズ不確定ゲームEmbeddingGTC2020NVIDIA MAXINEビデオ会議階層的クラスタリングtoio SDK for UnityGDMCMITメディアラボMagendaDDSPKaggleAssassin’s Creed OriginsSea of ThievesmonoAI technologyOculusテストBaldur's Gate 3Candy Crush SagaSIGGRAPH ASIA 2020BigGANMaterialGANReBeLVolvoRival PrakユービーアイソフトメタルギアソリッドVFSM汎用言語モデルChitrakar巡回セールスマン問題ジョルダン曲線リアリティ番組ジョンソン裕子MILEsインタラクティブ・ストリーミングインタラクティブ・メディアLudoArtEmisGROVERFAIRチート検出オンラインカジノRealFlowDeep FluidsMeInGameブレイン・コンピュータ・インタフェースBCILearning from VideoユクスキュルカントエージェントアーキテクチャOCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者StyleRigいただきストリート大森田不可止ザナック仁井谷正充Azure Machine Learning脱出ゲームHybrid Reward ArchitectureSuper PhoenixProject MalmoProject PaidiaProject LookoutWatch Forジミ・ヘンドリックスカート・コバーンエイミー・ワインハウスダフト・パンクGlenn MarshallStory2HallucinationJukeboxSIFTDCGANDANNCEハーバード大学デューク大学ローグライクゲームNeurIPS 2021ヒップホップサイレント映画環境音粒子群最適化法進化差分法下川大樹高津芳希大石真史BEiTDETRSentropyDiscordCALMプログラミングソースコード生成シチズンデベロッパーGitHubMCN-AI連携モデル並木幸介森寅嘉SIGGRAPH 2021半導体Topaz Video Enhance AIDLSSDynamixyzU-NetADVXLandDEATH STRANDINGEric JohnsonコジマプロダクションデシマエンジンMaxim PeterJoshua Romoffハイパースケープミライ小町テスラTesla BotTesla AI Dayバズグラフニュースタンテキ東芝倉田宜典韻律射影韻律転移コンピュータRPGアップルタウン物語KELDICメロディ言語AstroEgo4D日経イノベーション・ラボ敵対的強化学習GOSU Data LabGOSU Voice AssistantSenpAI.GGMobalyticsAWS Sagemaker形態素解析AWS Lambda誤字検出SentencePiece竹村也哉GOAPAdobe MAX 2021Omniverse AvatarNVIDIA MegatronNVIDIA MerlinNVIDIA Metropolisテキサス大学AI Messenger VoicebotOpenAI CodexHyperStyleRendering with StyleDisneyリサーチGauGANGauGAN2画像言語表現モデルSIGGRAPH ASIA 2021ディズニーリサーチMitsuba2ワイツマン科学研究所CG衣装VRファッションArtflowEponym音声クローニングGopher鑑定Oxia PalusArt RecognitionNHC 2021池田利夫新刊案内マーベル・シネマティック・ユニバースMCUアベンジャーズDigital DomainMasquerade2.0フェイシャルキャプチャー山田暉LSTMモリカトロンAIソリューションコード生成AIAlphaCodeCodeforces自己増強型AICOLMAPADOPGANverse3DグランツーリスモSPORTGTソフィーFIAグランツーリスモチャンピオンシップDGX A100Webcam VTuber星新一賞Live NationWeb3.0AIOpsスマートコントラクトメディア政治NightCafeLuis Ruiz東京工業大学博報堂ラップZ世代AIラッパーシステムプラスリンクス ~キミと繋がる想い~STCStyle Transfer ConversationRCPRinna Character PlatformAmeliaGateboxANIMAK逢妻ヒカリセコムバーチャル警備システム損保ジャパン上原利之アッパーグラウンド品質保証AutodeskBentley SystemsワールドシミュレーターH100COBOLDGX H100DGX SuperPODInstant NeRFartonomousbitGANsコミュニティ管理オンラインゲーム気候変動マックス・プランク気象研究所ビョルン・スティーブンス気象モデル気象シミュレーション環境問題SDGsメモリスタ音声変換Veap JapanEAP福井千春メンタルケアEdgar Handy東京理科大学産業技術総合研究所リザバーコンピューティングソニーマーケティングもじぱ暗号通貨FUZZLEAlterationオープンワールドAIFAP2EStyleGAN-NADAUnity for IndustryGLIDEAvatarCLIPSynthetic DataSonanticCohereUrzas.aiKikiZoetic AIペットDigital Dream LabsCozmoタカラトミーLOVOTMOFLINRomiミクシィユニロボットユニボGato汎用強化学習AIロンドン芸術大学Google BrainSound ControlSYNTH SUPERKarl SimsArtnomeICONATE浜中雅俊福井健策WikipediaSphereXaver 1000養蜂Beewiseフィンテック投資MILIZE三菱UFJ信託銀行西成活裕群衆マネジメントライブビジネス新型コロナ周済涛清田陽司サイバネティックス人工知能史AI哲学マップ星新一StyleGAN-XLStyleGAN3GANimatorVoLux-GANProjected GANSelf-Distilled StyleGANニューラルレンダリングPLATOframe.ioFoodly中川友紀子アールティBlenderBot 3Meta AIマーク・ザッカーバーグWACULAIライティングAIのべりすとQuillBotCopysmithJasperヴィトゲンシュタイン論理哲学論考PromptBaseバンダイナムコネクサスユーザーレビューmimicBaiduERNIE-ViLG古文書凸版印刷AI-OCR画像判定実況パワフルサッカー桃太郎電鉄桃鉄パワサカ岩倉宏介PPOMachine Learning Project Canvas国立情報学研究所石川冬樹スパコンスーパーコンピュータ松岡 聡TSUBAME 1.0TSUBAME 2.0ABCI富岳Society 5.0夏の電脳甲子園座談会NVIDIA GET3DAI絵師UGCPGCNovelAINovelAI Diffusionモーションデータポーズ推定メッシュ生成メルセデス・ベンツMagic LeapEpyllionマシュー・ボールムーアの法則Adobe MAX 2022Adobe ResearchGalactica映像解析東芝デジタルソリューションズSATLYS 映像解析AIPFN 3D ScanPFN 4D ScanDreamUpDeviantArtWaifu Diffusion元素法典Novel AICALAアフォーダンスPaLM-SayCanCode as PoliciesCaPコリジョンチェック山口情報芸術センター[YCAM]YCAMアンラーニング・ランゲージカイル・マクドナルドローレン・リー・マッカーシー鎖国[Walled Garden]​​プロジェクトSIGGRAPH ASIA 2022VToonifyControlVAE変分オートエンコーダーフォトグラメトリ回帰型ニューラルネットワークDeepJoinAzure OpenAI ServiceDeepLDeepL Writeシンギュラリティレイ・カーツワイルヴァーナー・ヴィンジRunway ResearchMake-A-VideoPhenakiDreamixText-to-ImageモデルLatitudeneoAIDreamIconmignstudiffuse対話型AIモデルnotenote AIアシスタントKetchupAI NewsArt SelfieArt TransferPet PortraitsBlob OperaクリムトクリティックネットワークアクターネットワークDMLabControl SuiteAtari 100kAtari 200MYann LeCun鈴木雅大コンセプトアートColie Wertzリドリー・スコット絵コンテストーリーボードPaLM APIMakerSuiteSkebDreambooth-Stable-DiffusionGoogle EarthGEPPETTO AIStable Diffusion web UIAI modelAI ModelsZMO.AIMOBBY’SモビーディックダイビングアウトドアAIスキャニング自動採寸3DLOOKSizerワコールスニーカーUNSTREETNewelseCheckGoods二次流通中古市場Dupe Killer偽ブランド配信ソニー・ピクチャーズ アニメーションFosters+PartnersZaha Hadid ArchitectsライブポートレイトWonder Studio土木インフラAmazon BedrockX.AIX Corp.TwitterXホールディングスMagiSDXLRTFKTNIKEClone X村上隆Digital MarkSnapchatクリエイターコミュニティバーチャルペットNVIDIA NeMo Serviceヴァネッサ・ローザVanessa A Rosa陶芸Play.ht音声AILiDARPolycamdeforumハーベストForGamesゲームマーケット岡野翔太郡山喜彦ジェフリー・ヒントンGoogle I/O 2023武蔵野美術大学BingAILightroomCanvaBOOTHpixivFANBOX虎の穴Fantiaとらのあな集英社少年ジャンプ+ComicCopilotゲームマスターInowrld AIMODGhostwriterSkyrimスカイリムRPGツクールMZChatGPT_APIMZダンジョンズ&ドラゴンズOracle RPG深津貴之xVASynthLaser-NVMERFAlibabaVQRFnvdiffrecNeRFMeshingLERFマスタリングリアム・ギャラガーグライムスBoomyジョン・レジェンドザ・ウィークエンドドレイクエッジワークス日本音楽作家団体協議会FCAVoiceboxさくらインターネットぷよぷよTCGQRコード囲碁デンソーデンソーウェーブ原昌宏日本機械学会ロボティクス・メカトロニクス講演会トヨタ自動車かんばん方式プロット生成FastGAN4コママンガElevenLabsHeyGenAfter Effects絵本出版Ammaar ReshiStoriesStoryBirdVersedProlificDreamerUnity SentisUnity MuseCaleb Ward宮田龍清河幸子西中美和安野貴博斧田小夜CM3leonStable DoodleT2I-Adapter日本マネジメント総合研究所Lily Hughes-RobinsonColossal Cave AdventureAdventureGPTリリー・ヒューズ=ロビンソンBabyAGIGPT-3.5 Turboカーリングウィンブルドン戦術分析パフォーマンス測定IoTProFitXWatsonxAthleticaコーチング北見工業大学北見カーリングホール画像解析じりつくんNTT SportictAIカメラSTADIUM TUBEPixelllot S3AIスマートコーチDreamboothヤン・ルカンPerfusionニューラル物理学毛髪荒牧英治中ザワヒデキ大屋雄裕中川裕志Adreeseen HorowitzNVIDIA Avatar Cloud EngineReplica StudiosSmart NPCsRoblox StudioPromethean AIMusiioEndelSonarSonar+DDolby AtmosSonar Music Festivalライゾマティクス真鍋大度花井裕也Ritchie HawtinErica SynthUfuk Barış MutluJapanese InstructBLIP Alpha日本新聞協会AIいらすとやAI PicassoEmposyAIタレントAIタレントエージェンシーmodi.aiBitSummit Let’s Go!!デジタルレプリカGOT7synthesiaHumanRFActors-HQSAG-AFTRAWGAチャーリー・ブルッカー岡野原大輔自己教師あり学習In-Context Learning(ICL)qubitIBM Quantum System 2ダリオ・ヒルジェン・スン・フアンHuggingFaceStable Audio宗教仏教コカ・コーラ食品Coca‑Cola Y3000 Zero SugarCopilot Copyright Commitmentテラバース京都大学音声解析感情分析周 済涛ステートマシンディープニューラルネットワークハイブリッドアーキテクチャAdobe Max 2023Bing ChatBing Image CreatorAssistant with BardThe ArcadeSearch Generative ExperienceDynalangVLE-CEAI ActEUArs ElectronicaAI規制欧州委員会欧州議会欧州理事会MusicLMAudioLMMusicCapsAudioCraftMubertMubert RenderGen-2Runway AI Film FestivalPreVizCharacter-LLM復旦大学Chat-Haruhi-Suzumiya涼宮ハルヒEmu VideoペリドットDream TrackMusic AI ToolsLyriaYahoo!知恵袋インタラクティブプロンプトAI石渡正人手塚プロダクション林海象古川善規大規模再構成モデルLRMObjaverseMVImgNetOne-2-3-453Dガウシアンスプラッティングワンショット3D生成技術FGDCFuture Game Development Conference佐々木瞬Anique中村太一エグゼリオCopilotserial experiments lainAI lainPCGPCGRLDungeons&Dragonsビートルズザ・ビートルズ: Get BackDemucs音楽編集ソフトAdobe AuditioniZotopeRX10MoisesレベルファイブGenie AISIGGRAPH Asia 2023C·ASEFLAREダンスMagicAnimateAnimate Anyoneインテリジェントコンピュータ研究所アリババDreaMovingVISCUITScratchスクラッチビスケットプログラミング教育VALL-EDeepdub.aiAUDIOGENEvoke MusicAutoFoleyColourlab.AiディズニーLargo.aiCinelyticTaskadePika.artAI Filmmaking AssistantAI Screenwriter芥川賞文学恋愛タップルAbema TVNEC木村屋GPT Store生成AIチェッカーユーザーローカル九段理江東京都同情塔4Dオブジェクト生成モデルAlign Your GaussiansAYGMAV3Dファーウェイ4D Gaussian Splatting4D-GSGlazeWebGlazeNightShadeSpawningHave I Been Trained?FortniteUnreal Editor For FortniteVolumetricsAIワールドジェネレーターRosebud AI GamemakerLayerCharisma.ai調査Meta QuestIP強いAI弱いAILumiereUNetImageFXMusicFXTextFXKeyframerGemini 1.5AI StudioVertex AIChat with RTXSlackSlack AIPokémon Battle Scopekanaeru占い行動ロジック生成AIConvaiNTTドコモEmemeGenie汎用AIエージェントAIファッションウィークインフルエンサーGrok-1Mixture-of-ExpertsMoEClaude 3Claude 3 HaikuClaude 3 SonnetClaude 3 Opus森永乳業C2PAゲーミフィケーションTomo KiharaPlayfool遊び​​tsukurun地方創生吉田直樹素材OpenAI JapanVoice EngineCommand R+Oracle Cloud InfrastructureGoogle WorkspaceUdio立命館大学京都精華大学TacticAINPMPFOOHProject AstraGoogle I/O 2024感情認識音声加工マルタ大学田中達大Move AIICRA2024大規模基盤モデルTorobo東京ロボティクスインピーダンス制御深層予測学習日立製作所尾形哲也AIREC汎用ロボットオムロンサイニックエックスViLaInPDDLニューサウスウェールズ大学Claude Sammutオックスフォード大学Lars Kunze杉浦孔明田向権VASA-1VoxCeleb2AniTalker上海大学LumaDream MachineNTTAI野々村真GPT-4-turbo佐藤恵助大道麻由物語構造分析慶応義塾大学渡邉謙吾ここ掘れ!プッカ大柳裕⼠加納基晴研究開発事例赤羽進亮UDI(Universal Duel Interface)第一工科大学小林篤史荻野宏実ビヘイビアブランチWPPGeneral Computer Control(GCC)CradleSpiral.AIItakoLLM-7b静岡大学明治大学北原鉄朗中村栄太日本大学ヤマハ前澤陽増田聡採用科学史AIサイエンティストTerraAI Overview電通AICO2BitSummit DriftOmega CrafterSPACE INVADIANS西島大介吉田伸一郎SIGGRAPH2024Motion-I2VToonify3D生成対向ネットワーク拡散モデルDiffusionうめ小沢高広ドリコムai andSaaSインサイトカスタマーサポートComfyUI-AdvancedLivePortraitGUIVideo to VideoiPhone 16OpenAI o1AIスマートリンクシャープウェアラブルCE-LLMCommunication Edge-LLMAIペットYahoo!ニュースAI Comic FactoryAI comic GeneratorComicsMaker.aiLlamaGen.aiGAZAIFlame Planner動画ゲーム生成モデルVirtuals ProtocolMarioVGG松原卓二Art Transfer 2Art Selfie 2Musical CanvasThe Forever LabyrinthRefik AnadolAlexander RebenRhizomatiksMolmoPixMoQwen2 72BDepth ProVARIETASAI面接官キリンホールディングス空間コンピューティングDream ScreenSynthIDFirefly Video ModelStable Video 4DAI受託開発事例田中志弥Playable!3DAdobe MAX 2024SneaksIllustratorMeta Quest 3XR-ObjectsOrion防犯O2Scam DetectionLive Threat Detection乗換NAVITIMEKaedim3DFY.aiLuma AIAvaturnBestatOasisDecartDejaboom!UnboundedEtched声優パブリシティ権日本俳優連合日本芸能マネージメント事業者協会日本声優事業社協議会IAPPTripo 2.0Meta 3D Genスマートシティ都市計画松本雄太Genie 2World LabsCybeverThird Dimension AI東北大学Gemini 2.0フロンティアワークス機械翻訳SimplifiedAI Voice over GeneratorAI Audio EnhancerエーアイAITalkコエステーションPlayStationVRMLTechno Magicゴーストバスターズスパイダーマンポリフォニー・デジタル荒牧伸志Project SidAlteraRobert YangProject AVAStreamlabsIntelligent Streaming AssistantProject DIGITSスーパーコンピューターエージェンテックAI Shortsテルアビブ大学DiffUHaulTrailBlazerヴィクトリア大学ウェリントンzeroscopeQNeRFカーネギーメロン大学RALFグラフィックメイクCanvasProjectsDeepSeek-R1LoopyリップシンクCyber​​HostOmniHuman-1CSAMImagen 3Google LabsMicrosoft Museゲーム生成モデルWHAMデモンストレーターChatGPT Edu滋賀大学キリンビール桜AIカメラSolist-AIロームFactorioカリフォルニア大学GamingAgentAnthropicClaude 3.7 SonnetFactorio Learning EnvironmentFLEDeepseek-v3Gemini-2-FlashLlama-3.3-70BGPT-4o-MiniZOZO NEXTZOZOFashion Intelligence SystemPartial Visual-Semantic EmbeddingWEARGPT-4Vソイル大学AIパズルジェネレーターDolphinGemmaWild Dolphin ProjectSoundStreamトークナイザー音声処理技術GPT-4.1GPT-4.1 miniGPT-4.1 nanoLINE AILINE AIトークサジェストGTC2025Fuxi LabNaraka:Bladepoint MobileバトルロイヤルビヘイビアツリーSoftServeALNAIRAMRIBLADEGAGAQUEENRunway Gen-4SkyReelsStable Virtual CameraIntangibleブライアン・イーノEnoBrain OneAlphaEvolveContinuous Thought Machine(CTM)ArmStable Audio Open SmallWord2WorldSTORY2GAMEウィットウォーターランド大学森川の頭の中花森リドGoogle I/O 2025FlowLyra 2MusicFX DJAnimon.aiツインズひなひまMayaDeep Q-LearningAlphaGOスペースインベーダープリンス・オブ・ペルシャドラゴンクエストIV堀井雄二山名学タイトーカプコンUbi AnvilエンジンV1 Video ModelArtificial AnalysisVideo ArenaVideo Model LeaderboardClaude 3.5Mistral樋口恭介Claude 4小川 昴ホラーゲームStable Diffusion 1.5階層型物語構造夏目漱石漱石書簡京都情報大学院大学上野未貴ブラウザCometKiroAww Inc.Visual BankTHE PENFUJIYAMA AI SOUND富士通西浦めめヘッドウォータース下斗米貴之ディプロマシーOpenAI o3Cluade Opus 4ChatGPT o3カリフォルニア大学サンディエゴ校Everyテトリス逆転裁判Gemini 2.5-proロゼッタ広報MavericksNoLang 4.0gpt-oss金井大組織作りCygnusTaurus笠原達也バグチケット都築圭太仁木一順ライフレビューSIGGRAPH 2025Text-to-MotionMiegakureSide InternationalRazer Cortex: Playtest Program - Powered by SideStable Audio 2.5Veo 3 FastKeep4oGenie 3Dynamics LabMagica 2Mirage 2ペンシルバニア大学コーネル大学HOLODECK 2.0Nano Banana市場調査GoogleクラウドゲームエイトQ-STAR小栗伸重藤井啓祐水野弘之AnimeGamer香港城市大学ニューヨーク大学God's Innovation ProjectGIP

大森田不可止氏が語る『いただきストリート』に実装されたキャラクターAI:懐ゲーから辿るゲームAI技術史vol.3

2021.4.28ゲーム

大森田不可止氏が語る『いただきストリート』に実装されたキャラクターAI:懐ゲーから辿るゲームAI技術史vol.3

『いただきストリート』とは?

1991年にアスキーから発売されたファミリーコンピュータ用ソフトで、『ドラゴンクエスト』シリーズでもおなじみの堀井雄二氏が考案したボードゲームです。サイコロを振って出た目の数だけマス目を進みながら、店や株を購入して資産を増やし、マップごとに設定された目標金額まで一番早く資産を増やし、スタート地点に戻ったプレイヤーが勝利となります。最大4人まで同時プレイが可能で、プレイヤーが4人に満たない場合はCPUキャラが参戦します。

マップ上のあちこちにある店を購入すると、以後他のプレイヤーが止まるたびに「買い物料」を、つまりお金をもらうことができます。逆に、他のプレイヤーが保有する店に止まった場合は、相手プレイヤーにお金を支払うことになります。

購入した店は、さらに増資をすることによって店の価値が上がり、他のプレイヤーが止まったときに支払ったり、店を売却する際の金額をアップさせることも可能です。また、銀行でエリア株を購入しておくと、そのエリアにある店を増資するなどの方法で株を値上がりさせることで、さらに儲けることができます。

続編のスーパーファミコン用ソフト、『いただきストリート2』からはエニックスが発売元となり、現在もシリーズ作品がスクウェア・エニックスから発売されています。

『いただきストリート』(以下、『いたスト』)に登場するCPUキャラは全部で7人。リスクを極力避ける堅実なプレイスタイルが持ち味のキャラクターもいれば、勝利のためならありとあらゆる手段を使う攻撃型のキャラクターもいるなど、それぞれ性格が異なるので1人で遊んでも十分に楽しめるのが特長です。

今年3月で、ちょうど発売30周年を迎えた『いたスト』では、キャラクターごとに異なる個性を出すために、どのようにしてAIを作っていたのでしょうか? 本作のプログラマー、大森田不可止氏にお話を伺いました。

本作に登場するCPUキャラは、それぞれプレイスタイルが異なるようにプログラムされている
ゲームの序盤は、誰も所有していない店に止まったらすかさず店を購入するのが基本。以後、他のプレイヤーが止まるたびに買い物料を徴収することができる
銀行に止まるか、または通過する際にいったん止まるとエリア株を購入できる
自分の店に止まったときは、自身が持つ任意の店に増資をすることで、買い物料や店のあるエリアの株価を上げることが可能となる

非力なハードでも動かせる、対数を利用したAIプログラムを開発

——本日はよろしくお願いいたします。まずは大森田さんが『いたスト』の開発に参加することになったきっかけから教えていただけますか?

大森田不可止氏(以下、大森田):ゲームスタジオの遠藤(雅伸)さんから「プログラマーを探しているんだけど、ゲームスタジオでは受けられないので、受けてくれないか?」と紹介されたのがきっかけです。

——『いたスト』の主な開発スタッフは、大森田さんのほかにどなたがいらっしゃいましたか?

大森田:プロデューサーは、当時『ファミコン通信』の編集長だった塩崎剛三さんです。サブのスタッフにはYanaKen(柳澤健二)さんと、キャラメル・ママの社長で『ドラゴンボール』の亀仙人のモデルになった松本常男さんがいました。企画は堀井さん、イラストは荒井清和さんで、サウンドはゲヱセン上野(利幸)さんですね。プログラマーは私1人でしたが、最後にピンチヒッターとして遠藤さんにも手伝っていただきました。

——開発中は、アスキーのオフィスに出掛けてプログラムを作っていたのですか?

大森田:基本的には自宅作業でしたが、だんだん忙しくなってきてからはアスキーに席を用意していただきました。ちょうど薗部(博之)さんと机を並べながら仕事をしていましたね。

——PCや開発機材は、どのようなものを使っていたのでしょうか?

大森田:ファミコン用ソフトなので、大規模な開発機材などは必要ありませんでした。当時はPC-9801でプログラムを書いてからコンパイルして、ROMに焼いてチェックしながら作っていたと思います。

——当時であれば、すでにファミコンソフト開発用のICE(In-Circuit Emulator)はあったと思いますが、ICEは使わなかったんですね。

大森田:ICEはなかったのですが、途中でRAMにデータを転送すると動かせる、ROMの代わりとしてRAMが使える環境ができましたので、それからは作業効率がアップしたように思います。

——『いたスト』に登場するCPUキャラは全部で7人いて、それぞれ性格が違っているようですね。個々の性格や設定は誰が決めたのでしょうか?

大森田:私が決めました。荒井さんがデザインしたキャラクターはすごく立っていたので、「こういう姿をしているから、こんな性格だろうな」と絵を見て想像しながら作りました。例えば、ゲームの中に「5倍買い」(※)というルールがあるのですが、これは普通の人はなかなかチャレンジしないんですよ。そこで、「水沢けいこ」というイケイケ風のお姉さんキャラに、無理矢理「5倍買い」をするプログラムを入れたりもしていました。要するに、CPUがチュートリアルの役割を果たせるようにしたんですね。

 
※「5倍買い」:自分以外のプレイヤーが保有する店に止まったときに、お店の5倍の金額を払って店を買収する行為。主に、特定のプレイヤーが同一エリアの店の独占を阻止する際に用いられる。
イケイケドンドンな性格の「水沢けいこ」
自分より資産が上の相手に対して「5倍買い」を仕掛けたところ。購入時は大きな支出となるが、後に増資や買い物料をもらって元手を回収し、プラスにできれば結果的に良い買い物をしたことになる

——開発がスタートしてから、ゲームが完成するまでにどのぐらいの時間が掛かりましたか?

大森田:開発期間がとにかく長くて、約3年掛かりました。私以外のスタッフはみんな仲良しで、塩崎さんが毎週土曜日の夜に、みんなを集めて企画会議を開きながら作っていましたが、堀井さんが中心になって作っていたように思います。堀井さんの頭の中には、最初から完成形が描けていたようで、「ここはどうしますか?」とか「あれはどうしますか?」と相談すると、翌週には「こういうふうに作って」と仕様を完成させて持ってきてくれましたね。

——CPUキャラのAI、思考ルーチンも、最後は堀井さんがチェックしてオーケーを出したのでしょうか?

大森田:そうですね。実際に遊んでいただいて、特に文句などは出ませんでしたから、これはオーケーだろうなと思って作りました。当時はまだ誰もAIのことが分からず、「AIって、どうやって作ればいいの?」という時代でしたので、『いたスト』のAIは私や堀井さんが以前にやっていた『モノポリー』の研究を土台にして作ってあります。

——そもそも、堀井さんが『いたスト』を企画したきかっけは、『モノポリー』にインスパイアされたところが大きかったわけですよね?

大森田:はい。『いたスト』にはアメリカ大陸のマップが登場するのですが、最初の完成したマップがまさにアメリカ大陸でした。そこから開発がなかなか進まなくなったので、私がPC-9801のBASICで試しにゲームを作り、それを実際に遊んでもらうことを繰り返しながら開発を進めていきました。堀井さん以外のスタッフは、過去にゲームを作った経験者がほとんどいなかったので、私が作ったものを実際に見てもらいながら開発していました。

——AIのプログラムの制作期間はどのぐらいでしたか?

大森田:6か月ぐらいで作って、あとは自分で遊びながら少しずつ修正して完成させました。自分で遊んでいると、「ここをちょっと直したいな」という部分がたくさん出てきてしまうので、かなり時間が掛かってしまいましたね。

それと、個人的に一番面白かったのは、『いたスト』というゲームが本当に面白いゲームなのかどうか、分からなくなってしまった時期があったんです。ですが、ある日遊び始めたら「アレ? これって意外と面白いな」と気付いたときがあって、これで大丈夫だという自信が持てました。

自信を持つまでの間は、何度も繰り返し見ているゲーム画面なので、他人が見て本当に面白く見えるのか、あまり自信が持てなかったのですが、自分で遊んでいるうちに楽しくなったので、これでいけるなと。

——では、デバッグやテストプレイにはどのぐらいの時間を割いたのでしょうか?

大森田:デバッグはあまりやっていなかったと思います。確か、関連スタッフが遊んでいる最中に不具合いを見付けたら報告してもらって修正する形でデバッグしていたとは思いますが、あまり直した記憶がないですね。私自身もメチャクチャ長い時間遊んでいましたし、もともとナムコにいた頃から(※)、私のプログラムはバグが少ないことで定評があったので(笑)。

※筆者補足:大森田氏は、かつてナムコでMSX版『キング&バルーン』や、ファミコン版『ギャラガ』などのプログラムを担当していた。

——CPUキャラが自身の行動を決定するプログラムは、どのような仕組みになっているのでしょうか?

大森田:例えば、誰にも買われていない店がまだ残っていれば、店を買うことを優先しますが、だんだんゲームを進めていくと高額物件が出現しますので、もし高額物件が出てきた場合は、そこを通り越せる場所に進むことを優先するようになります。もし高額物件の反対方向から進んでしまうと、次のターンでそこに止まっちゃう可能性が生じますからね。

つまり、支払期待値がなるべく下がる作戦を取るようにするために、どれを優先にするのかを決める数式を用意して、その計算させてっていうのをプログラムの中でやっているわけです。

上下2通りのルートが選べる場所でCPUキャラがサイコロを振った一例。相手プレイヤーが持つ高額物件を通り越せる下側のルートを選択しているのが分かる

——その数式は、具体的にどのような計算をするのでしょうか?

大森田:ファミコンのCPUで計算できるのは8ビットで、しかも掛け算ができないので、とにかく計算が苦手で時間が掛かるハードなんですよ。そこで、計算を簡単にするために8ビットの対数表を持たせてあります。対数を使うと掛け算が足し算になるので、非常に簡単に計算できるようになりますし、大小関係もちゃんと維持されますので。でも、本来ならば対数を元の数値に戻さなければいけないのですが、実際は元に戻さずに大小の比較チェックだけを実行していましたから、大雑把な計算しかできないんですよね。

——ファミコンみたいな8ビットのハードでは、容量的にも制約が厳しかったのでしょうか?

大森田:ええ。容量もそれほど大きくないですし、とにかく8ビットの計算しかできないのは厳しかったです。CPUにZ80を使っていれば16ビットの加減算まではできたのですが、ファミコンのCPUに使っていたのは完全8ビットの6502だったので、もし16ビットの計算をさせようとするとクロックをたくさん使わなくてはいけないので、何とかしてそれを回避する必要がありました。確か、ファミコンは1.7 MHzで、それが60分の1秒でワンセットの処理を終了させないといけない仕様でしたから、何とかその範囲内で計算ができるように工夫するのがなかなか大変でした。

収入・支出の期待値を調整してCPUキャラの個性を作成

——CPUキャラごとの性格や特徴などはどうやって調整したのでしょうか?

大森田:基本的には、先に数式を作っておいて、後からそれを修正しながら仕上げました。一度数式を作っておけば、あとはパラメーターを変えるだけで、キャラごとの個性が出せるんです。基本はあくまで数式ですが、例えば株の売買のように計算できない部分もありますので、そういう場合は人間のプレイヤーの真似をして動くようにしてあります。

——ゲーム中に、プレイヤーの行動を見て真似をするプログラムが入っていたんですか?

大森田:いえいえ。そうではなくて、開発中に私が別の人のプレイを見て、その人と同じ買い方をさせるプログラムそのものを組んだんです。

——AIを作るときは、ついつい強くしようとし過ぎると失敗するので、より人間らしくする必要がありますよね?

大森田:普通に一番バランスのいいキャラクターを作ろうとすると、みんな行動が似てきちゃうので、何とかそれを外すようにいろいろ仕込んでいました。さっきもお話をした「けいこ」の5倍買いもその一例ですね。「いただきストリート」では、バランスの取れたプレイが一番強いハズなのですが、そこから多少外れても意外と裏目に出て強かったりする面もあるんですよ。例えば、全然関係ない株を買ったら、後でたまたま値上がりしちゃうこともありますので。

——例えば、チャンスのマス目に止まってカードを引いた場合は、完全に運の要素で資産が突然増えたり減ったりしますからね。

大森田:ええ。多少は自由度の高いプレイをするようにプログラムは組んであったと思います。みんな同じような個性になると、遊んでいて面白くないですしね。一番プレイしたのは私でしたから、私自身が遊んでいて面白くなるようにちゃんと作ってありますよ(笑)

——AIに関しては、ほかのスタッフから何か意見や改善の要望を受けたことがありましたか?

大森田:AIがどう動いているのかを誰も想像できなかったみたいで、意見はあまり出てこなかったですね。AIに関しては、私のほうでかなり自由に作っていました。

——ちなみに、大森田さんは学生時代にAIの勉強をされたことはあったのでしょうか?

大森田:それほどはやっていなかったですね。学生の頃は、ちょうど第2次AIブームでニューラルネットワークが注目されていた時期だったので、多少は関連書籍を読んではいましたが、まだまだコンピューターが非力な時代でしたから、実際に試せる環境は全然ありませんでした。

——では、当時からAIへの興味自体はあったわけですね?

大森田:そうですね。薄くではありますが勉強していました。あの時代は遺伝的プログラミングとか、成果はほとんど出なかったのですが、いろいろと実験的なプログラムが流行したので、まあ面白い時代ではあったように思います。

——ニューラルネットワークから進化したものがディープランニングになるかと思いますが、「いたスト」では対戦を繰り返すごとに強くなる、学習するAIを作っていたのでしょうか?

大森田:ちょっとだけ考えましたが、ファミコンの性能ではそこまで実装することはできなかったですね。バックアップRAMの中に、いろいろな経験を積み上げること自体は可能なのですが、容量が2キロバイト程度しかなかったので、直前の局面を記憶するだけでもう精一杯でした(笑)。でも当時としては、あのハードであれだけのものを遊べるようにできていたこと自体が大きかったと思います。

——ターボファイル(※)を使っても、学習するAI実装は無理だったのでしょうか?

大森田:そうすると、開発がすごく大変になってしまう問題が出てきますね。もしプログラムを学習型にすると、特にデバッグがメチャクチャ大変になって、完成させようと思ったら相当な労力と気合いが必要になると思います。ゲームって、たまにしか起こらないことを仕込むと、デバッグが大変になるんです。

ある知り合いの会社で作ったシミュレーションゲームで、滅多に出ないイベントを仕込んだらデバッグで一度も発生しなくて困ったことがあったそうです。「本当に機能してるのかな?」って(笑)。プログラムを作るときは、そこまで考えなければいけないので難しくなりますよね。

 

※ターボファイル:アスキーが発売していたファミコン用データレコーダーのこと。乾電池による駆動で、対応するタイトルのプレイデータをセーブすることができた。

——『いたスト』における、AIのプログラムで最も工夫したポイントはどこですか?

大森田:やっぱり、対数が一番のキモでしょうね。掛け算をさせたくてもできないので、対数で何とかごまかそうと……(苦笑)。

——ソフトの発売後、『いたスト』のAIのプログラムについて同業者や業界内での評判はいかがでしたか?

大森田:あまり聞いたことはないのですが、「よく考えて行動するな」とはみんな言ってくれてましたね。

——後に、大森田さんはスーパーファミコン版の『モノポリー』(※1993年にトミーから発売)でもCPUキャラのAIを作ることになりますが、『いたスト』のプログラムで得た経験がここでも生かされたのでしょうか?

大森田:はい。『いたスト』の開発には3年掛かりましたが、『モノポリー』は以前から研究していた成果もあったので3か月で完成しました(笑)。

——『いたスト』では、プレイヤーが任意のタイミングで保有する店を競売に出したり、他のプレイヤーと交渉してお店を交換することもできますよね? CPUキャラの交渉する、しないの判断は、どうやってプログラムしたのでしょうか?

大森田:基本的には、収入期待値と支払期待値というものがあって、前者はできるだけ大きく、後者はできるだけ小さくするように計算するプログラムを組んでいますので、物件の交換とかの場合は、交換する前後で期待値がどう変化するのかを見たうえで判断しているハズですね。

——終盤戦になると、負けているCPUキャラがあえて相手に有利になるように店を交換するなどの方法で、イチかバチかの勝負を仕掛けることもあるようですが、これもあらかじめプログラムしていたのでしょうか?

大森田:ええ。それもやっていたかもしれませんね。支払期待値は大きくなってしまうけど、負けているときは多少のリスクは負わなくてはいけない、というプログラムも作ってあった気がします。要は、将棋の勝負手みたいなものですよね。ただし、8ビットの対数はすごく精度が低いので、もしかしたら精度が低かったせいで、たまたまそうなった可能性も無きにしもあらずですが(苦笑)……。

収入・支払期待値の計算と、勝負を賭ける行動を選択するプログラムの融合によって、店の交換や競売などの高度な戦略もCPUキャラが使いこなせるようになっている

——参加プレイヤーを0人に設定すると、CPUキャラだけが参加するゲームを見ながらルールを勉強することもできますよね? 企画段階から、チュートリアルも兼ねた観戦モードを用意する構想があったのでしょうか?

大森田:いいえ。プログラマーの遊びです。「あ、こんなこともできるじゃん」と思いついたので、面白いかどうかは別にして「じゃあ、やっちゃえ」と作っただけですね(笑)。

——もしかして、0人プレイはもともとデバック用に作ったものを製品版にもそのまま残したのでしょうか?

大森田:いえいえ。そこまでの発想はなかったですね。デバッグの最中は、どの道ずっと画面を見ている必要がありましたから、自分でプレイしたほうが一番しやすかったんですよ。

参加人数を0人にすると、こんなシャレたセリフが表示される

CPUキャラの調整以外にもあった、AIのプログラムに工夫を凝らした理由

——ゲーム開始時に、CPUキャラの強さを「強い」「普通」「弱い」などのように、プレイヤーが任意に設定できる機能を実装しようというお考えはなかったのでしょうか?

大森田:それはなかったですね。個性を付けて、ちゃんとプレイできるCPUにするだけで手一杯で、そこまでは手が回りませんでした。キャラクターは全部で7人いますから、組み合わせによっては簡単だったり、逆に難しくなったりすることはあればいいかな、と思ったぐらいですね。

『いたスト』は、サイコロの目がかなり大きく影響するゲームで、いい目が出続ければ弱いキャラでもときどき勝ってしまうこともありますので、この点でも面白くできたなとは思います。

——サイコロの出目は、CPUキャラによってバラつきなどが発生するのでしょうか?

大森田:サイコロに関してはまったくいじっていません。一番最後に振られた目のデータは保存するように作ってあるので、電源を切ってからやり直してもまた同じ目が出るようになっています。それ以外のときは、基本的にはプレイヤーが順番を待っている間に乱数を更新しているので、ボタンを押すタイミングによって目が変わってしまうのですが、プレイヤーにはそれが伝わりませんので。つまり、サイコロのズルは一切しないプログラムにしてあります。

——現役のプログラマーに向けて、『いたスト』のAIプログラムで参考にしてほしい、あるいは継承してほしい部分などはありますか?

大森田:長いこと苦労しながら作ったので、それなりに愛着はありますが、今とはハードの能力が違いすぎるので……。ファミコンは8ビットでレジスタが3個しかありませんが、今のPCはレジスタが32個もあって、64ビットの浮動小数点演算を1クロックでできますしね。

ただ、ゲームを面白くする上での工夫は、色々と入っていると思います。CPUの能力が上がっても、ゲームに関して工夫する部分は今もそれほど変わっていない気がしますので。『いたスト』は、遊んでいるうちにいろいろなことが起きるので、CPUキャラを強くするにはどうすればいいのか、なかなか一筋縄ではいかないのも面白いところですね。自分でプログラムを作っていてすごく思いました。『いたスト』みたいな昔のゲームを、今のマシンパワーでリメイクしたら、もっと面白くなりそうですよね。今の『いたスト』シリーズでも、すでにAIはかなり賢くなっているとは思いますけど。

——ゲームを面白くするポイントについて、詳しく説明していただけますか?

大森田:実は、AI以外の部分にもいろいろあるのですが、例えば画面分割しているところですね。『いたスト』では画面分割をしているけれど、ハードウェアを載せていないんですよ。普通はタイマーチップとかを載せるのですが、力ずくで画面分割をさせていますので、もしAIの処理が重くなると、画面分割がときどき乱れることがあるんですよ。

——ナルホド。AIのプログラムをうまく作らないと、別のところでも支障が出ちゃうんですね。

大森田:それから、荒井さんにイラストをお願いするときに「ファミコンは4色まで使えますよ」と私が言ってしまったせいで、荒井さんが背景とは違った色を1色使ってキャラを描いちゃったんです。でも、せっかく描いていただいたので、何とかして5色とも表示させたいなあと考えていました。

そこで、5色のうち一番面積の小さいところに、スプライトをパッチとして充てる方法を思い付きました。例えば、赤が最も面積が小さかったら、スプライトを使って赤を出すみたいな処理をするわけですね。ですので、イラストを元にしながら、どの色の面積が一番小さいのかを計算するプログラムを作ってあります(笑)。

ただし、スプライトの面積が大きくなった場合は、下の画面の色が足りなくなって、その分だけでスプライトを借りてくる形になってしまうので、マップの色がチラつくようになってしまいましたね。ただ、プレイヤーの目線は上側、つまりキャラクターの方を向くだろうから、多分気付かれないだろうなと思っていました。でも、後から何人かに気付かれちゃいましたけど……。まあファミコンの性能では、多少のところは目をつぶらないといけない面はありましたね。

——細かいところで、すごい工夫をされていたんですね。

大森田:画面分割をしているので、分割するところまでにすべての処理を終わらさないといけないので、まあ大変でした。時間はあったので、いろいろと凝った処理を作っていましたね。

AIの処理に負担を掛けないことで、画面分割や色数を増やす工夫する余地が生まれていたとは、実に驚きのエピソードだ

——もしかしたら、『いたスト』のようなゲームはオンラインでプレイデータ集めるようにすればAIをさらに強くできるのではないでしょうか? あるいは、プレイヤーの傾向やクセに合わせて、CPUの強さを調整できるようになるかもしれないですね。

大森田:そうですね。『いたスト』であれば、オンラインの実装はそれほど難しくはなさそうですし、今どきのAIの作り方ができるかもしれないですね。CPUキャラの数が7人いてちょうどよかったとは思いますが、もっと人数を増やして個性を出してもありかなあとは思います。

『モノポリー』のときは、CPUキャラを30人ぐらい作りましたが、そのなかには実在のプレイヤーをモデルにした人が2人いて、いつもその2人は張り合う設定にプログラムしたら、ちゃんとゲーム内で競い合うように動いてくれたので面白かったですね。

懐ゲーから辿るゲームAI技術史

vol.1:三宅陽一郎が語る、ウィル・ライトとシムシティの思想

vol2:仁井谷正充氏に訊く『ザナック』にAIが導入された理由

取材・文/鴫原盛之

©ARMOR PROJECT/ KADOKAWA CORPORATION

RELATED ARTICLE関連記事

AIと遊んで楽しいと感じられるゲームを考える:上原利之氏×森川幸人氏 対談

2022.3.31ゲーム

AIと遊んで楽しいと感じられるゲームを考える:上原利之氏×森川幸人氏 対談

eSports世界チャンピオンを下したOpenAI FiveはゲームAIに何をもたらすか?

2019.4.17ゲーム

eSports世界チャンピオンを下したOpenAI FiveはゲームAIに何をも...

【CEDEC2020】オンラインゲーム『BLUE PROTOCOL』で敵AIにパーティを組ませる方法

2020.10.19ゲーム

【CEDEC2020】オンラインゲーム『BLUE PROTOCOL』で敵AIにパ...

RANKING注目の記事はこちら