モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CGCGへの扉安藤幸央機械学習月刊エンタメAIニュースディープラーニング生成AI河合律子吉本幸記OpenAIGAN音楽NVIDIAGoogleChatGPT強化学習三宅陽一郎グーグルニューラルネットワークStable Diffusion森川幸人大規模言語モデルDeepMindシナリオLLMQAマイクロソフトAIと倫理人工知能学会GPT-3自然言語処理Facebook大内孝子倫理モリカトロン映画著作権アートゲームプレイAIキャラクターAI敵対的生成ネットワークルールベースSIGGRAPHスクウェア・エニックスモリカトロンAIラボインタビュー画像生成MinecraftNPCNFTプロシージャルMidjourneyデバッグロボットDALL-E2音楽生成AIStyleGAN遺伝的アルゴリズム画像生成AIファッション自動生成ディープフェイクVFXAdobeテストプレイメタAIアニメーションテキスト画像生成深層学習CEDEC2019デジタルツインメタバースVR小説ボードゲームDALL-ECLIPビヘイビア・ツリーマンガCEDEC2021CEDEC2020ゲームAI作曲Microsoft不完全情報ゲームロボティクスナビゲーションAIマインクラフト畳み込みニューラルネットワークtoioスポーツエージェントGDC 2021マルチモーダル汎用人工知能JSAI2022バーチャルヒューマンNVIDIA OmniverseGDC 2019マルチエージェントCEDEC2022MetaAIアート3DCGStability AIメタデジタルヒューマン懐ゲーから辿るゲームAI技術史教育ジェネレーティブAIプロンプトGPT-4栗原聡手塚治虫CNNNeRFDALL-E 3BERTMicrosoft AzureUnityOmniverseJSAI2023ELSI鴫原盛之HTN階層型タスクネットワークソニーRed RamJSAI2020GTC20233DマーケティングTensorFlowインタビューブロックチェーンイベントレポート動画生成AI対話型エージェントAmazonメディアアートDQN合成音声水野勇太アバターUbisoftGenvid TechnologiesガイスターStyleGAN2ARGTC2022SIGGRAPH ASIANetflixJSAI2021東京大学はこだて未来大学Bard研究シムピープル世界モデルMCS-AI動的連携モデルモーションキャプチャーTEZUKA2020CEDEC2023AGIテキスト生成インディーゲームElectronic Arts音声合成メタデータGDC Summerイーロン・マスクStable Diffusion XLCM森山和道アストロノーカキャリア模倣学習eスポーツスタンフォード大学アーケードゲームテニスサイバーエージェントトレーディングカード音声認識類家利直eSportsBLUE PROTOCOLシーマンaiboチャットボットGeminiブラック・ジャックワークショップEpic GamesAIロボ「迷キュー」に挑戦AWS徳井直生クラウド斎藤由多加AlphaZeroTransformerGPT-2rinnaAIりんなカメラ環世界中島秀之PaLMGitHub Copilot哲学ベリサーブPlayable!GPT-3.5ハリウッド理化学研究所Gen-1SoraSFテキスト画像生成AI松尾豊AIQVE ONEデータマイニング現代アートDARPAドローンシムシティゲームエンジンImagenZorkバイアスマーダーミステリーASBSぱいどんアドベンチャーゲームAI美空ひばり手塚眞バンダイナムコ研究所スパーシャルAIELYZANEDO広告FSM-DNNMindAgentLEFT 4 DEAD通しプレイ論文OpenAI Five本間翔太馬淵浩希CygamesAudio2Faceピクサープラチナエッグイーサリアム効果音ボエダ・ゴティエビッグデータ中嶋謙互Amadeus Codeデータ分析MILENVIDIA ACEナラティブNVIDIA RivaOmniverse ReplicatorWCCFレコメンドシステムNVIDIA DRIVE SimWORLD CLUB Champion FootballNVIDIA Isaac Simセガ柏田知大軍事田邊雅彦Google I/Oトレカ慶應義塾大学Max CooperGPTDisneyFireflyPyTorch京都芸術大学ChatGPT4高橋力斗眞鍋和子バンダイナムコスタジオヒストリアAI Frog Interactive新清士SIE大澤博隆SFプロトタイピング齊藤陽介成沢理恵お知らせMagic Leap OneTencentサッカーモリカトロン開発者インタビュー宮本茂則バスケットボールTikTokSuno AItext-to-imageサルでもわかる人工知能text-to-3DVAEDreamFusionTEZUKA2023リップシンキングRNNUbisoft La Forge自動運転車知識表現ウォッチドッグス レギオンVTuberIGDA立教大学秋期GTC2022市場分析フォートナイトどうぶつしょうぎRobloxジェイ・コウガミ音楽ストリーミングMIT野々下裕子Adobe MAXマシンラーニング村井源5GMuZeroRival Peakpixivオムロン サイニックエックスGPTs電気通信大学対話エンジン稲葉通将ポケモン3Dスキャン橋本敦史リトル・コンピュータ・ピープルCodexシーマン人工知能研究所コンピューティショナル・フォトグラフィーPreferred Networksゴブレット・ゴブラーズ絵画Open AI3D Gaussian SplattingMicrosoft DesignerアップルイラストシミュレーションSoul Machines柿沼太一完全情報ゲームバーチャルキャラクター坂本洋典釜屋憲彦ウェイポイントLLaMAパス検索Hugging Face対談藤澤仁生物学GTC 2022xAIApple Vision Pro画像認識SiemensストライキStyleCLIPDeNAVoyager長谷洋平GDC 2024クラウドコンピューティングmasumi toyotaIBM宮路洋一OpenSeaGDC 2022SNSTextWorldEarth-2BingMagentaYouTube音声生成AIELYZA PencilScenarioSIGGRAPH2023AIピカソGTC2021AI素材.comCycleGANテンセントAndreessen HorowitzQA Tech Night松木晋祐NetHack下田純也桑野範久キャラクターモーションControlNet音源分離NBAフェイクニュースユニバーサルミュージックRPG法律Web3SIGGRAPH 2022レベルデザインDreamerV3AIボイスアクターUnreal Engine南カリフォルニア大学NVIDIA CanvasGPUALife人工生命オルタナティヴ・マシンサム・アルトマンサウンドスケープLaMDATRPGマジック:ザ・ギャザリングAI Dungeonゲーム背景アパレル不気味の谷ナビゲーションメッシュデザイン高橋ミレイ深層強化学習松原仁松井俊浩武田英明フルコトELYZA DIGEST建築西成活裕ハイブリッドアーキテクチャApex LegendsELIZA群衆マネジメントライブポートレイトNinjaコンピュータRPGライブビジネスWonder StudioAdobe Max 2023アップルタウン物語新型コロナ土木KELDIC周済涛BIMBing Chatメロディ言語清田陽司インフラBing Image CreatorゲームTENTUPLAYサイバネティックスMARVEL Future FightAstro人工知能史Amazon BedrockAssistant with BardタイムラプスEgo4DAI哲学マップThe Arcadeバスキア星新一X.AISearch Generative Experience日経イノベーション・ラボStyleGAN-XLX Corp.Dynalang敵対的強化学習StyleGAN3TwitterVLE-CE階層型強化学習GOSU Data LabGANimatorXホールディングスWANNGOSU Voice AssistantVoLux-GANMagiAI Act竹内将SenpAI.GGProjected GANEUMobalyticsSelf-Distilled StyleGANSDXLArs ElectronicaニューラルレンダリングRTFKTAI規制岡島学AWS SagemakerPLATONIKE欧州委員会映像セリア・ホデント形態素解析frame.ioClone X欧州議会UXAWS LambdaFoodly村上隆欧州理事会誤字検出MusicLM認知科学中川友紀子Digital MarkAudioLMゲームデザインSentencePieceアールティSnapchatMusicCapsLUMINOUS ENGINEクリエイターコミュニティAudioCraftLuminous ProductionsBlenderBot 3バーチャルペットパターン・ランゲージ竹村也哉Meta AINVIDIA NeMo ServiceMubertちょまどマーク・ザッカーバーグヴァネッサ・ローザMubert RenderGOAPWACULVanessa A RosaGen-2Adobe MAX 2021陶芸Runway AI Film Festival自動翻訳Play.htPreViz音声AIAIライティングLiDARCharacter-LLMOmniverse AvatarAIのべりすとPolycam復旦大学FPSQuillBotdeforumChat-Haruhi-Suzumiyaマルコフ決定過程NVIDIA MegatronCopysmith涼宮ハルヒNVIDIA MerlinJasperハーベストEmu VideoNVIDIA MetropolisForGamesNianticパラメータ設計ゲームマーケットペリドットバランス調整岡野翔太Dream Track協調フィルタリング郡山喜彦Music AI Tools人狼知能テキサス大学ジェフリー・ヒントンLyriaGoogle I/O 2023Yahoo!知恵袋AlphaDogfight TrialsAI Messenger VoicebotインタラクティブプロンプトAIエージェントシミュレーションOpenAI Codex武蔵野美術大学StarCraft IIHyperStyleBingAI石渡正人Future of Life InstituteRendering with Style手塚プロダクションIntel林海象LAIKADisneyリサーチヴィトゲンシュタインPhotoshop古川善規RotomationGauGAN論理哲学論考Lightroom大規模再構成モデルGauGAN2CanvaLRMドラゴンクエストライバルズ画像言語表現モデルObjaverse不確定ゲームSIGGRAPH ASIA 2021PromptBaseBOOTHMVImgNetDota 2モンテカルロ木探索ディズニーリサーチpixivFANBOXOne-2-3-45Mitsuba2バンダイナムコネクサス虎の穴3DガウシアンスプラッティングソーシャルゲームEmbeddingワイツマン科学研究所ユーザーレビューFantiaワンショット3D生成技術GTC2020CG衣装mimicとらのあなNVIDIA MAXINEVRファッションBaidu集英社FGDC淡路滋ビデオ会議ArtflowERNIE-ViLG少年ジャンプ+Future Game Development ConferenceグリムノーツEponym古文書ComicCopilot佐々木瞬ゴティエ・ボエダ音声クローニング凸版印刷コミコパGautier Boeda階層的クラスタリングGopherAI-OCRゲームマスター画像判定Inowrld AIJulius鑑定ラベル付けMODAniqueTPRGOxia PalusGhostwriter中村太一バーチャル・ヒューマン・エージェントtoio SDK for UnityArt RecognitionSkyrimエグゼリオクーガー田中章愛実況パワフルサッカースカイリムCopilot石井敦銭起揚NHC 2021桃太郎電鉄RPGツクールMZComfyUI茂谷保伯池田利夫桃鉄ChatGPT_APIMZserial experiments lainGDMC新刊案内パワサカダンジョンズ&ドラゴンズAI lainマーベル・シネマティック・ユニバースコナミデジタルエンタテインメントOracle RPGPCGMITメディアラボMCU岩倉宏介深津貴之PCGRLアベンジャーズPPOxVASynthDungeons&Dragonsマジック・リープDigital DomainMachine Learning Project CanvasLaser-NVビートルズMagendaMasquerade2.0国立情報学研究所ザ・ビートルズ: Get BackノンファンジブルトークンDDSPフェイシャルキャプチャー石川冬樹MERFDemucsスパコンAlibaba音楽編集ソフト里井大輝KaggleスーパーコンピュータVQRFAdobe Audition山田暉松岡 聡nvdiffreciZotopeAssassin’s Creed OriginsAI会話ジェネレーターTSUBAME 1.0NeRFMeshingRX10Sea of ThievesTSUBAME 2.0LERFMoisesGEMS COMPANYmonoAI technologyLSTMABCIマスタリングモリカトロンAIソリューション富岳レベルファイブ初音ミクOculusコード生成AISociety 5.0リアム・ギャラガー転移学習テストAlphaCode夏の電脳甲子園グライムスKaKa CreationBaldur's Gate 3Codeforces座談会BoomyVOICEVOXCandy Crush Saga自己増強型AIジョン・レジェンドGenie AISIGGRAPH ASIA 2020COLMAPザ・ウィークエンドSIGGRAPH Asia 2023ADOPNVIDIA GET3DドレイクC·ASEデバッギングBigGANGANverse3DFLAREMaterialGANダンスグランツーリスモSPORTAI絵師エッジワークスMagicAnimateReBeLグランツーリスモ・ソフィーUGC日本音楽作家団体協議会Animate AnyoneGTソフィーPGCFCAインテリジェントコンピュータ研究所VolvoFIAグランツーリスモチャンピオンシップVoiceboxアリババNovelAIさくらインターネットDreaMovingRival PrakDGX A100NovelAI DiffusionVISCUITぷよぷよScratchユービーアイソフトWebcam VTuberモーションデータスクラッチ星新一賞大阪公立大学ビスケット北尾まどかHALOポーズ推定TCGプログラミング教育将棋メタルギアソリッドVメッシュ生成KLabFSMメルセデス・ベンツQRコードVALL-EMagic Leap囲碁Deepdub.aiナップサック問題Live NationEpyllionデンソーAUDIOGEN汎用言語モデルWeb3.0マシュー・ボールデンソーウェーブEvoke MusicAIOpsムーアの法則原昌宏AutoFoleySpotifyスマートコントラクト日本機械学会Colourlab.AiReplica Studioロボティクス・メカトロニクス講演会ディズニーamuseChitrakarQosmoAdobe MAX 2022トヨタ自動車Largo.ai巡回セールスマン問題かんばん方式Cinelyticジョルダン曲線メディアAdobe ResearchTaskade政治Galacticaプロット生成Pika.artクラウドゲーミングがんばれ森川君2号AI Filmmaking Assistant和田洋一リアリティ番組映像解析FastGANStadiaジョンソン裕子セキュリティ4コママンガAI ScreenwriterMILEsNightCafe東芝デジタルソリューションズ芥川賞インタラクティブ・ストリーミングLuis RuizSATLYS 映像解析AI文学インタラクティブ・メディア恋愛PFN 3D ScanElevenLabsタップル東京工業大学HeyGenAbema TVLudo博報堂After EffectsNECラップPFN 4D Scan絵本木村屋SIGGRAPH 2019ArtEmisZ世代DreamUp出版GPT StoreAIラッパーシステムDeviantArtAmmaar Reshi生成AIチェッカーWaifu DiffusionStoriesユーザーローカルGROVERプラスリンクス ~キミと繋がる想い~元素法典StoryBird九段理江FAIRSTCNovel AIVersed東京都同情塔チート検出Style Transfer ConversationProlificDreamerオンラインカジノRCPUnity Sentis4Dオブジェクト生成モデルRealFlowRinna Character PlatformUnity MuseAlign Your GaussiansiPhoneCALACaleb WardAYGDeep Fluids宮田龍MAV3DMeInGameAmelia清河幸子ファーウェイAIGraphブレイン・コンピュータ・インタフェース西中美和4D Gaussian SplattingBCIGateboxアフォーダンス安野貴博4D-GSLearning from VideoANIMAKPaLM-SayCan斧田小夜Glaze予期知能逢妻ヒカリ宮本道人WebGlazeセコムLLaMA 2NightShadeユクスキュルバーチャル警備システムCode as PoliciesSpawningカント損保ジャパンCaPHave I Been Trained?CM3leonFortnite上原利之Stable DoodleUnreal Editor For FortniteドラゴンクエストエージェントアーキテクチャアッパーグラウンドコリジョンチェックT2I-AdapterXRPAIROCTOPATH TRAVELER西木康智VolumetricsOCTOPATH TRAVELER 大陸の覇者山口情報芸術センター[YCAM]AIワールドジェネレーターアルスエレクトロニカ2019品質保証YCAM日本マネジメント総合研究所Rosebud AI GamemakerStyleRigAutodeskアンラーニング・ランゲージLayer逆転オセロニアBentley Systemsカイル・マクドナルドLily Hughes-RobinsonCharisma.aiワールドシミュレーターローレン・リー・マッカーシーColossal Cave Adventure奥村エルネスト純いただきストリートH100鎖国[Walled Garden]​​プロジェクトAdventureGPT調査齋藤精一大森田不可止COBOLSIGGRAPH ASIA 2022リリー・ヒューズ=ロビンソンMeta Quest高橋智隆DGX H100VToonifyBabyAGIIPロボユニザナックDGX SuperPODControlVAEGPT-3.5 Turbo泉幸典仁井谷正充変分オートエンコーダーカーリング強いAIロボコレ2019Instant NeRFフォトグラメトリウィンブルドン弱いAIartonomous回帰型ニューラルネットワークbitGANsDeepJoin戦術分析ぎゅわんぶらあ自己中心派Azure Machine LearningAzure OpenAI Serviceパフォーマンス測定Lumiere意思決定モデル脱出ゲームDeepLIoTUNetHybrid Reward Architectureコミュニティ管理DeepL WriteProFitXImageFXウロチョロスSuper PhoenixWatsonxMusicFXProject MalmoオンラインゲームAthleticaTextFX気候変動コーチングProject Paidiaシンギュラリティ北見工業大学KeyframerProject Lookoutマックス・プランク気象研究所レイ・カーツワイル北見カーリングホールAppleWatch Forビョルン・スティーブンスヴァーナー・ヴィンジ画像解析Gemini 1.5気象モデルRunway ResearchじりつくんAI StudioLEFT ALIVE気象シミュレーションMake-A-VideoNTT SportictVertex AI長谷川誠ジミ・ヘンドリックス環境問題PhenakiAIカメラChat with RTXBaby Xカート・コバーンエコロジーDreamixSTADIUM TUBESlackロバート・ダウニー・Jr.エイミー・ワインハウスSDGsText-to-ImageモデルPixelllot S3Slack AIソフトバンクPokémon Battle Scopeダフト・パンクメモリスタAIスマートコーチポケットモンスターGlenn MarshallkanaeruThe Age of A.I.Story2Hallucination音声変換Latitude占いレコメンデーションJukeboxDreambooth行動ロジック生成AIVeap Japanヤン・ルカンConvaiEAPneoAIPerfusionNTTドコモSIFT福井千春DreamIconニューラル物理学EmemeDCGAN医療mign毛髪GenieMOBADANNCEメンタルケアstudiffuse荒牧英治汎用AIエージェント人事ハーバード大学Edgar Handy中ザワヒデキAIファッションウィーク研修デューク大学大屋雄裕インフルエンサー中川裕志Grok-1mynet.aiローグライクゲームAdreeseen HorowitzMixture-of-Experts東京理科大学NVIDIA Avatar Cloud EngineMoE人工音声NeurIPS 2021産業技術総合研究所Replica StudiosClaude 3リザバーコンピューティングSmart NPCsClaude 3 Haikuプレイ動画ヒップホップ対話型AIモデルRoblox StudioClaude 3 SonnetソニーマーケティングPromethean AIClaude 3 Opusサイレント映画もじぱnote森永乳業環境音暗号通貨note AIアシスタントMusiioC2PAFUZZLEKetchupEndelゲーミフィケーションAlterationAI NewsTomo Kihara粒子群最適化法Art SelfiePlayfool進化差分法オープンワールドArt TransferSonar遊び群知能下川大樹AIFAPet PortraitsSonar+D​​tsukurunウィル・ライト高津芳希P2EBlob Opera地方創生大石真史クリムトDolby Atmos吉田直樹BEiTStyleGAN-NADASonar Music Festival素材DETRライゾマティクスSIMASporeクリティックネットワーク真鍋大度OpenAI JapanデノイズUnity for Industryアクターネットワーク花井裕也Voice Engine画像処理DMLabRitchie HawtinCommand R+SentropyGLIDEControl SuiteErica SynthOracle Cloud InfrastructureCPUDiscordAvatarCLIPAtari 100kUfuk Barış MutluGoogle WorkspaceSynthetic DataAtari 200MJapanese InstructBLIP AlphaUdioCALMYann LeCun日本新聞協会立命館大学プログラミング鈴木雅大AIいらすとや京都精華大学ソースコード生成コンセプトアートAI PicassoTacticAIGMAIシチズンデベロッパーSonanticColie WertzEmposyNPMPGitHubCohereリドリー・スコットAIタレントFOOHウィザードリィMCN-AI連携モデル絵コンテAIタレントエージェンシーGPT-4oUrzas.aiストーリーボードmodi.aiProject Astra介護大阪大学BitSummitGoogle I/O 2024西川善司並木幸介KikiBlenderBitSummit Let’s Go!!Gemma 2サムライスピリッツ森寅嘉Zoetic AIVeoゼビウスSIGGRAPH 2021ペット感情認識ストリートファイター半導体Digital Dream LabsPaLM APIデジタルレプリカ音声加工Topaz Video Enhance AICozmoMakerSuiteGOT7マルタ大学DLSSタカラトミーSkebsynthesia田中達大山野辺一記NetEaseLOVOTDreambooth-Stable-DiffusionHumanRFInworld AI大里飛鳥DynamixyzMOFLINActors-HQMove AIRomiGoogle EarthSAG-AFTRAICRA2024U-NetミクシィGEPPETTO AIWGAIEEE13フェイズ構造ユニロボットStable Diffusion web UIチャーリー・ブルッカー大規模基盤モデルADVユニボPoint-EToroboXLandGato岡野原大輔東京ロボティクスAI model自己教師あり学習インピーダンス制御DEATH STRANDINGAI ModelsIn-Context Learning(ICL)深層予測学習Eric Johnson汎用強化学習AIZMO.AILoRA日立製作所MOBBY’Sファインチューニング早稲田大学Oculus Questコジマプロダクションロンドン芸術大学モビーディックグランツーリスモ尾形哲也生体情報デシマエンジンGoogle Brainダイビング量子コンピュータAIRECSound Controlアウトドアqubit汎用ロボット写真SYNTH SUPERAIスキャニングIBM Quantum System 2オムロンサイニックエックス照明Maxim PeterKarl Sims自動採寸北野宏明ViLaInJoshua RomoffArtnome3DLOOKダリオ・ヒルPDDLハイパースケープICONATESizerジェン・スン・フアンニューサウスウェールズ大学山崎陽斗ワコールHuggingFaceClaude Sammut立木創太スニーカーStable Audioオックスフォード大学浜中雅俊UNSTREET宗教Lars Kunzeミライ小町Newelse仏教杉浦孔明テスラ福井健策CheckGoodsコカ・コーラ田向権GameGAN二次流通食品パックマンTesla Bot中古市場Coca‑Cola Y3000 Zero SugarTesla AI DayWikipediaDupe KillerCopilot Copyright Commitmentソサエティ5.0Sphere偽ブランドテラバースSIGGRAPH 2020バズグラフXaver 1000配信京都大学ニュースタンテキ養蜂立福寛東芝Beewiseソニー・ピクチャーズ アニメーション音声解析DIB-R倉田宜典フィンテック感情分析投資Fosters+Partners周 済涛韻律射影MILIZEZaha Hadid Architectsステートマシン韻律転移三菱UFJ信託銀行ディープニューラルネットワーク

【CEDEC2021】ゲーム産業における対話キャラクターAIの発展(前編)

2021.10.18ゲーム

【CEDEC2021】ゲーム産業における対話キャラクターAIの発展(前編)

CEDEC2021で行われたセッション「ゲーム産業における対話キャラクター人工知能技術の発展」にて、スクウェア・エニックスの三宅陽一郎氏が講演しました。ゲーム分野以外にも対話エージェントに注目が集まっている今、対話キャラクターAI技術の体系化には大きな意味があります。本レポートは前後編に分かれています。まず前編となる本稿ではゲームAIにおける対話エージェントの位置づけ、およびゲーム産業外で研究されている対話エージェントとの違いについてまとめます。

ゲームはプレイヤーとの”対話”をどのように実現してきたか

三宅氏はゲームのおもしろさと人工知能の相関を図1のように示します。CGやアニメという表現の役割、インタラクション、そして第3の軸として人工知能がもたらす知的な喜びは、ゲームに深みを与えるものとして存在します。

図1:人工知能がゲームのおもしろさに深みを与える

まず、人工知能がゲームの中でどう使われているのか、現在のゲームAIの全体像から俯瞰します。ゲームの中のAIとして「メタAI」「キャラクターAI」「スパーシャルAI」があり、メタAIはゲーム全体を俯瞰的にコントロールするAI、キャラクターAIはキャラクタの頭脳、スパーシャルAIは空間的認識を行うAIのことを指します。また、ゲームの外側、つまり開発における人工知能技術の活用(自動バランスAIやQAのAIなど)もあります。

図2:ゲームの中のAI、ゲームの外のAI

今回解説する対象はゲームの中で使われるAIです。ゲームと言ってもさまざまなジャンルがありますが、ここでは大きく「物語的ゲーム」と「アクションゲーム」に分けて考えます。AIに求められる機能は両者それぞれ異なります。物語的ゲームでは物語を進行するAIと物語の中で役を演じるAIが、アクションゲームではゲームの空間でうまく運動するAIと環境や状況をリアルタイムで認識するAIがプレイヤーとの対話を担う形になります。

物語的ゲームにおける人工知能のモデルで長く採用されてきたスタイルは、個々のキャラクターAIがあり、必要な場面で演技をさせるというものです。一方でアクションゲームでは、歩ける場所を判断するなどの空間的認識とともにキャラクターAIを併用させます。ただ、近年ではこの2つが融合した物語的アクションゲームが増えてきたことで、「メタAI」と「キャラクターAI」「スパーシャルAI」の3つが連携する形でゲーム内のAIが構築されるようになりました。これを三宅氏は「MCS-AI動的連携モデル」と呼びます。

図3:MCS-AI動的連携モデル

歴史的に俯瞰して見ると、昔はレベルスクリプトと言われる完全に動作が規定されたプリプログラムによってゲームを進行させていました。しかし、3Dゲームの台頭とともに1994年頃にはナビゲーションAIやスパーシャルAIが実装されるようになり、ゲーム全体をコントロールするようになります。1999年頃にはキャラクターAIが自律化し始めますが、キャラクターAIが勝手に動き回るようになるとゲームとしての統制が取れなくなるため、上から制御するメタAIが実装されるようになります。そして、その3つが連携するモデルが一般的になったのが現在です。

図4:ゲームの進化と人工知能モデルの変化

このようにゲームAIは、ゲーム世界とプレイヤーの間をつなぐことでゲームを進行させる手助けをします。そして、コマンドや選択肢を選ぶなどのプレイヤーの行動を解釈し、それに応答することで人間と人工知能のインタラクションを生じさせます。

図5:ゲーム内の模式図

人間と人工知能が会話をする対話モデルについては、雑談が最も難易度が高いと言われています。次にある程度テーマを決めた自由会話、ミニゲーム、キーワードだけの会話、一問一答、一方的な会話の順に難易度が下がり、それぞれコネクショニズムとシンボリズムのアプローチがあります。

図6:人間と人工知能の対話の難易度
図7:対話人工知能の技術

また、ゲーム産業ではまだそこまで本格的ではありませんが、オントロジーの利用も始まっています。オントロジーとは概念を体系化することで、それを使うことである程度の会話が簡単に組めるようになります。

例えばロールプレイングゲームの会話を考えてみます。通常、魔法のデータは、「名前」「ダメージ」「種類」という形のリストになっていますが、これを人工知能の知識表現の中にオントロジーとして組みます。「魔法」の中に「回復・補助魔法」「攻撃魔法」「時間魔法」という分類があり、さらに「回復・補助魔法」の中に「蘇生魔法」「回復魔法」という分類が存在します。AIはこのグラフを見て、今の自分のMPは「7」しかないから使える魔法はこれだと判断することができます。

図8:オントロジーの例

あるいは、フレームベースの会話の作り方は次のような形となります。プロファイルデータに対して、自分が装備しているものや「最後に訪れた街」などのデータを次々とインプットしていきます。それによって「お客さんどこからきたの?」「ケルムの街から」という会話を簡単に生成することができます。ゲーム産業ではこれまでも、こうしたテクニックが部分的に使われてきましたが、最近ではディープラーニングも活用されるようになってきました。

図9:フレームベースの作り方(プロファイルデータに対してインプットしていく)

対話エージェントの本質とは

そもそも人間と人工知能の間には多層的な関係があり、ゲームの中の人工知能(キャラクター)とプレイヤーも複数のレイヤーにわたって関係を結ぶことになります。例えば草原やダンジョンの舞台など、ある環境の中で一緒にいるキャラクターのちょっとした仕草、あるいは身体と身体がぶつかるなどのインタラクションがその関係性に影響を与えます。

図10:人間と人工知能は複数の関係で結ばれている

一般的に、学術分野およびビジネスでの応用における「対話エージェント」はテキスト(言語)をベースにしたものがほとんどですが、ゲームの場合、身体を持って身振りとともに会話を行うエージェントのことを指し、さらには自分自身で考えて行動する自律型エージェントもふくみます。つまり、ゲーム産業における対話エージェントの場合、「対話」の意味をもっと深く取る必要があります。単に会話だけのことではなく、言葉なしの対話、身体による対話について取り上げるべきです。その点がゲーム産業における対話エージェントの最大の特徴だと三宅氏は指摘します。

図11:ゲーム産業における対話エージェントの分類

対話エージェントはユーザーと何らかのインタラクションをしながら応答しますが、それには下記の2つの能力が求められます。

  1. ユーザーの行動を解釈する
  2. その状況に応じて応答する

対話エージェントのはじまりと言われるのは1966年の『ELIZA(イライザ)』です。これはカウセリングのエージェントで、簡単な構文解析機能を持ち、抽出した語句から質問文を形成します。構文解析などの自然言語処理は50年代からありますが、ELIZAは人間との会話をする対話型を実現した初めての例です。ELIZAはさまざまな所に移植されました。テキストベースで進行するコンピュータRPG(CRPG)もその中のひとつです。

図12:ELIZAからEcala、Dungeonへ

三宅氏は対話エージェントのプログラムとテキストベースのRPGは起源を同一にしているという見解を示しつつ、「ユーザーが何と対話をするか」を重要なポイントとして挙げています。ELIZAの場合は、ELIZAというエージェントとの対話です。ゲームの場合は、ゲームそのものが語り手になることで、いわゆるインタラクティブストーリーとなり、そこに語りの主体が生まれます。つまりゲームの場合はゲームそのものと対話するということになりますが、これはゲームの進化とともに変わっていくことになります。

図13:ゲームの場合、ユーザーはゲームそのものと対話する

語りの主体とキャラクターの分離

前述の70年代のコンピュータロールプレイング(CRPG)の流れがあり、80年代に入るとキャラクター対話ゲーム『エミー2』(1985年、ASCII)、『リトル・コンピュータ・ピープル』(1985年、Activision)のようなキャラクターの生活を観察するゲーム、あるいは犬を育成する『パピーラブ』(1986年、Addison Wesly Publishing)などが登場します。

デジタルゲームは、対話エージェントから発展している側面もあります。三宅氏が例示したのは『Zork』という、テキストベースでプレイヤーと対話することで、あらかじめ用意されたスクリプトと場合分けによって進行するゲームです。これもまた、ゲームとプレイヤーとの対話とみなすことができます。

図14:『Zork』

ゲームとプレイヤーとのテキストだけの会話からキャラクターが身体を持ち、対話エージェントになる、つまりキャラクターを成長させることでゲームに深みを出していくことは今から見ると当然のことですが、テキストで返すだけの存在から身体を持つことで物理的インタラクションが生まれることで、会話、身体、物理的インタラクションの3つの軸が揃います。その3軸により、ユーザーが経験するキャラクターを通したゲーム世界はより深いものとなります。

関連記事:無数の可能性から最適な行動を選ぶ。『Zork』プレイAIに見る言語的世界との新たな相互作用​​

図15:デジタルゲームにおける対話エージェントの発展

通常のキャラクターと対話エージェントの違いは、前者は物理的インタラクションの比重が非常に高いことです。一方で後者である対話エージェントは変化に富む会話によってアクションとは異なる次元の楽しみを与えてくれます。例えば戦闘していて掛け声が出る、あるいは「ヤバそうだから逃げよう!」というような会話が出てくることで、より臨場感のある体験を実現します。こうした対話エージェントの応用先として、RPGの仲間や、自分の代わりになるキャラクター、あるいはモブなど、色々な用途があります。

図16:通常のキャラクターと対話エージェント

そして、語り手としての主体であるゲームシステムに対し、キャラクターが出てくることで語り手とキャラクターの分離が起こります。かつてはストーリーを直接ゲームシステムが語っていましたが、キャラクターが登場して仕草や行動により間接的に物語を語るシステムがゲームの中で発生します。つまり、直接は語らずに展開によって物語を見せていくナラティブが発生するということです。

図17:デジタルゲームにおけるナラティブの発生

事例として『アップルタウン物語』(1987年、スクウェア)を示します。キャラクター(女の子)の生活を観察するゲームで、プレイヤーは荷物を届けたり、お願いごとをしたり、間接的に関わることができますが、基本的にはこの女の子の生活を見ているだけです。これは、ゲームシステム自体は物語を語るわけではなく、キャラクターが生活しているところから何かを読み取るという形のゲームです。

図18:『アップルタウン物語』(1987年、スクウェア)

1989年発売の『シムシティ』は、街を作っていくゲームです。グリッド上のマップに発電所やマンションなど、好きな建物を置くことができます。すると、ゲームシステム側は「工場を置いたから公害が発生する」「マンションを建てたら人口密度が上がる」というように、どんどん街の状況を変化させていきます。街全体がひとつのシステムになっているのが特徴です。プレイヤーのアクションによって街が変化し、プレイヤーがその変化を見てまたアクションを施すことの繰り返しでゲームが進行していきます。

仕組みとしては、実際にプレイヤーに見えている層の下に何層かレイヤーがあり、そこでアクションに対する計算がなされています。例えば、2層目では人口密度の計算をして、第3層では地形の影響を、第4層では人口増加率の警察署とか消防署への影響を計算して、それをプレイヤーに見える階層に返すという形です。言い換えれば、街のシステムという語りの主体があり、それに対して操作ユニットが前面に出ることでナラティブを発生していると言えます。

関連記事:三宅陽一郎が語る、ウィル・ライトとシムシティの思想:懐ゲーから辿るゲームAI技術史vol.1​​

図19:『シムシティ』の多層構造

『ワンダープロジェクトJ 機械の少年ピーノ』(1994年、エニックス)および『ワンダープロジェクトJ2 コルロの森のジョゼット』(1996年、エニックス)では、対話エージェントの経験が非常に大きな意味を持ちます。プレイヤーが作るキャラクターの経験の上にゲームシステムが混在するという形で、ゲームが進んでいきます。『The Sims』が2000年にUtilityベースの内面モデルを発表しますが、それに先駆けて、かなり早い時期に複雑な内面モデルを提示したと言えます。

対話エージェントの歴史としてまとめると、『ELIZA』からテキストアドベンチャーゲームが発生し、いくつかの分岐がなされます。1つは箱庭シム系、『リトル・コンピュータ・ピープル』『アップルタウン物語』など。もう1つの流れに『エミー2』『パピーラブ』『Creatures』など、対話キャラクター育成があります。ゲーム内の会話については、特にこれが代表的というものではなく、さまざまなゲームにその実装例を見ることができます。

図20:対話エージェントの歴史

ゲーム産業外における対話エージェント研究

ゲーム産業外において、対話エージェントは近年盛り上がっている分野です。例えば「KELDIC」は稲葉通将氏(電気通信大学 人工知能先端研究センター)が開発したTwitter上の会話エージェントで、多くのフォロワーのデータを学習して、人間と会話することができます。学習機能もあり、ある文脈においてこのセリフがどうだったかというアンケートを取ることで、AIが評価づけしたものとの差異から学習していく仕組みになっています。

図21:KELDICの学習機能

現状では、ディープラーニングを用いたエージェントの研究はゲーム産業よりもゲーム産業外で活発に行われています。特に2019年はゲームを題材に多数のエージェントが研究されました。たとえば、Microsoft Researchはこれまでのテキストアドベンチャーゲームを収集して、それを解くAI「TextWorld」を開発しました。テキストベースのアドベンチャーゲームを自動生成するAIを開発し、その中でイベントなども作っていく研究も進んでいます。こちらは、キャラクターというよりは語りの主体を研究していると言えます。

図22:Microsoft Research「TextWorld」

『Minecraft』上にAI研究のためのプラットフォーム「Malmo」がありますが、Facebookはそこで会話をしながらMinecraftのクエストを解く「CraftAssist」という研究を行っています。また、カーネギーメロン大学はMalmoを拡張した「MineRL」を使って、エージェントがダイヤモンドをどれだけ早く取得できるかをAIに解かせる研究しています。

図23:Facebook「CraftAssist」
図24:カーネギーメロン大学「MineRL」

Facebook AIの「LIGHT」はテーブルトークRPGを用いた対話学習の研究です。LIGHTはテキストアドベンチャーのフレームワークで、その中でクラウドワーカーを使って会話データを集めていきます。そこでは、さまざまな設定を集めてロールを割り当てていきます。たとえば10分間会話をさせて会話データを集めます。その集まった会話データをコーパスとして、さまざまな会話の研究を行います。こちらも、キャラクターとの会話の研究です。

前項で見てきたように、どちらかというとゲーム産業はゲームシステムとキャラクターをインタラクションさせるエージェントを作ってきました。一方、こうした学術研究ではキャラクターそのものにフォーカスしてより賢くしようとする傾向があります。そのことを踏まえて、次のゲーム産業におけるエージェント研究として重要になるのは、仲間キャラクターや敵キャラクターをふくめた関係性を模索することだと三宅氏は捉えています。

後編に続く

Writer:大内孝子

RELATED ARTICLE関連記事

よりリアルに人間らしく。進化するNPC開発の最前線

2020.12.28ゲーム

よりリアルに人間らしく。進化するNPC開発の最前線

ラベルなしの動画を学習してゲームワールドを生成するGenieの可能性

2024.3.18ゲーム

ラベルなしの動画を学習してゲームワールドを生成するGenieの可能性

三宅陽一郎が語る、ウィル・ライトとシムシティの思想:懐ゲーから辿るゲームAI技術史vol.1

2020.3.06ゲーム

三宅陽一郎が語る、ウィル・ライトとシムシティの思想:懐ゲーから辿るゲームAI技術...

RANKING注目の記事はこちら