モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CG機械学習ディープラーニングCGへの扉安藤幸央GAN月刊エンタメAIニュース河合律子ニューラルネットワークOpenAINVIDIA強化学習三宅陽一郎音楽FacebookQAスクウェア・エニックス森川幸人モリカトロンAIラボインタビュー敵対的生成ネットワークDeepMindルールベースキャラクターAIシナリオGPT-3自然言語処理NFTGoogleグーグル自動生成映画デバッグCEDEC2019吉本幸記StyleGANプロシージャル人工知能学会遺伝的アルゴリズムメタAI深層学習マイクロソフトアートビヘイビア・ツリーCEDEC2021大内孝子CEDEC2020ゲームAISIGGRAPH不完全情報ゲームゲームプレイAIVRナビゲーションAI畳み込みニューラルネットワークDALL-ECLIPロボットAIと倫理ディープフェイクGDC 2021VFXメタバースGDC 2019マルチエージェントボードゲームNPCCNNデジタルツインモリカトロンUnityAIアートファッションHTN階層型タスクネットワークDALL-E2JSAI2020TensorFlowMicrosoftイベントレポートテストプレイ水野勇太小説アニメーションガイスターStyleGAN2懐ゲーから辿るゲームAI技術史toioソニーJSAI2021スポーツ研究シムピープル汎用人工知能GDC Summerバーチャルヒューマンブロックチェーン倫理BERTAdobeアストロノーカNVIDIA Omniverseeスポーツ対話型エージェントAmazoneSportsBLUE PROTOCOLシーマンUbisoft画像生成テキスト画像生成AlphaZeroTransformerGPT-2カメラ環世界中島秀之鴫原盛之DARPAドローンシムシティAI美空ひばり手塚治虫Electronic ArtsメタデータLEFT 4 DEADインタビュー通しプレイOpenAI Five本間翔太CMピクサープラチナエッグイーサリアム作曲ビッグデータ中嶋謙互Amadeus CodeMicrosoft AzureキャリアナラティブOmniverse ReplicatorレコメンドシステムNVIDIA DRIVE SimNVIDIA Isaac Simサイバーエージェント音声認識ロボティクスPyTorchDQN眞鍋和子バンダイナムコスタジオaibo合成音声Minecraft齊藤陽介マインクラフトお知らせチャットボットアバターサルでもわかる人工知能VAEOmniverseUbisoft La Forge自動運転車ワークショップGenvid Technologiesメタ知識表現ウォッチドッグス レギオンIGDAどうぶつしょうぎEpic Gamesジェイ・コウガミ音楽ストリーミング徳井直生マシンラーニングクラウド対話エンジン斎藤由多加リトル・コンピュータ・ピープルコンピューティショナル・フォトグラフィーゴブレット・ゴブラーズ絵画AIりんなシミュレーション完全情報ゲーム坂本洋典釜屋憲彦ウェイポイントパス検索対談藤澤仁生物学GTC 2022画像認識GTC2022StyleCLIPDeNA長谷洋平masumi toyota宮路洋一OpenSeaGDC 2022教育TextWorldSIGGRAPH ASIAGTC2021CycleGANNetHackフェイクニュースエージェントAIボイスアクターNVIDIA CanvasImagenGPUALifeZork人工生命オルタナティヴ・マシンサウンドスケープMCS-AI動的連携モデルASBSマンガモーションキャプチャーぱいどんTEZUKA2020ナビゲーションメッシュ松井俊浩バンダイナムコ研究所スパーシャルAIELYZAELYZA DIGEST3D音声合成マーケティングApex LegendsELIZANinjaコンピュータRPGアップルタウン物語KELDICメロディ言語ゲームTENTUPLAYMARVEL Future FightAstroタイムラプスEgo4Dバスキア日経イノベーション・ラボ敵対的強化学習階層型強化学習GOSU Data LabWANNGOSU Voice Assistant竹内将SenpAI.GGMobalytics馬淵浩希Cygames岡島学AWS Sagemaker映像セリア・ホデント形態素解析UXAWS Lambda誤字検出認知科学ゲームデザインSentencePieceLUMINOUS ENGINELuminous Productionsパターン・ランゲージ竹村也哉ちょまどボエダ・ゴティエGOAPAdobe MAX 2021模倣学習Omniverse AvatarFPSNVIDIA Rivaマルコフ決定過程NVIDIA MegatronNVIDIA Merlinスタンフォード大学NVIDIA Metropolisパラメータ設計テニスバランス調整協調フィルタリング人狼知能テキサス大学軍事AlphaDogfight TrialsAI Messenger VoicebotエージェントシミュレーションOpenAI CodexStarCraft IIHyperStyleFuture of Life InstituteRendering with StyleIntelDisneyLAIKADisneyリサーチRotomationGauGANGauGAN2ドラゴンクエストライバルズ画像言語表現モデル不確定ゲームSIGGRAPH ASIA 2021Dota 2モンテカルロ木探索ディズニーリサーチMitsuba2ソーシャルゲームEmbeddingワイツマン科学研究所GTC2020CG衣装NVIDIA MAXINEVRファッション淡路滋ビデオ会議ArtflowグリムノーツEponymゴティエ・ボエダ音声クローニングGautier Boeda階層的クラスタリングGopherJuliusSIE鑑定TPRGOxia Palusバーチャル・ヒューマン・エージェントtoio SDK for UnityArt Recognitionクーガー田中章愛Meta石井敦銭起揚NHC 2021茂谷保伯池田利夫GDMC新刊案内マーベル・シネマティック・ユニバース成沢理恵MITメディアラボMCU著作権アベンジャーズマジック・リープDigital DomainMagic Leap OneMagendaMasquerade2.0ノンファンジブルトークンDDSPフェイシャルキャプチャーサッカーモリカトロン開発者インタビュー里井大輝Kaggle宮本茂則バスケットボール山田暉Assassin’s Creed OriginsAI会話ジェネレーターSea of ThievesGEMS COMPANYmonoAI technologyLSTMモリカトロンAIソリューション初音ミクOculusコード生成AI転移学習テストAlphaCodeBaldur's Gate 3CodeforcesCandy Crush Saga自己増強型AISIGGRAPH ASIA 2020COLMAPADOPデバッギングBigGANGANverse3DMaterialGANリップシンキングRNNグランツーリスモSPORTReBeLグランツーリスモ・ソフィーGTソフィーVolvoFIAグランツーリスモチャンピオンシップRival PrakDGX A100VTuberユービーアイソフトWebcam VTuber星新一賞北尾まどかHALO市場分析将棋メタルギアソリッドVフォートナイトFSMRobloxナップサック問題Live Nation汎用言語モデルWeb3.0AIOpsSpotifyMITスマートコントラクトReplica StudioAWSamuseChitrakarQosmo巡回セールスマン問題ジョルダン曲線メディア5GMuZero政治クラウドゲーミングRival Peakがんばれ森川君2号和田洋一リアリティ番組Stadiaジョンソン裕子MILEsNightCafeインタラクティブ・ストリーミングLuis Ruizインタラクティブ・メディアポケモンCodexシーマン人工知能研究所東京工業大学Ludo博報堂ラップSIGGRAPH 2019ArtEmisZ世代AIラッパーシステムARrinnaGROVERプラスリンクス ~キミと繋がる想い~FAIRSTCチート検出Style Transfer ConversationオンラインカジノRCPアップルRealFlowRinna Character PlatformiPhoneデジタルヒューマンDeep FluidsSoul MachinesMeInGameAmeliaAIGraphブレイン・コンピュータ・インタフェースバーチャルキャラクターBCIGateboxLearning from VideoANIMAK予期知能逢妻ヒカリセコムユクスキュルバーチャル警備システムカント損保ジャパン哲学上原利之ドラゴンクエストエージェントアーキテクチャアッパーグラウンドPAIROCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者Siemensアルスエレクトロニカ2019品質保証StyleRigAutodesk逆転オセロニアBentley Systemsワールドシミュレーター奥村エルネスト純いただきストリートH100齋藤精一大森田不可止COBOL高橋智隆DGX H100ロボユニザナックDGX SuperPOD泉幸典仁井谷正充クラウドコンピューティングロボコレ2019Instant NeRFartonomousbitGANsぎゅわんぶらあ自己中心派Azure Machine Learning意思決定モデル脱出ゲームHybrid Reward Architectureコミュニティ管理ウロチョロスSuper PhoenixSNS理化学研究所Project Malmoオンラインゲーム気候変動Project PaidiaEarth-2Project Lookoutマックス・プランク気象研究所Watch Forビョルン・スティーブンスBing気象モデルLEFT ALIVE気象シミュレーション長谷川誠ジミ・ヘンドリックス環境問題Baby Xカート・コバーンエコロジーロバート・ダウニー・Jr.エイミー・ワインハウスSDGsMagentaYouTubeダフト・パンクメモリスタSFGlenn MarshallELYZA PencilThe Age of A.I.Story2Hallucination音声変換レコメンデーションJukebox松尾豊Veap JapanEAPテンセントSIFT福井千春DCGAN医療MOBADANNCEメンタルケア人事ハーバード大学Edgar Handy研修デューク大学Netflixデータマイニングmynet.aiローグライクゲーム東京大学東京理科大学人工音声NeurIPS 2021産業技術総合研究所はこだて未来大学リザバーコンピューティングプレイ動画ヒップホップキャラクターモーションソニーマーケティングサイレント映画もじぱNBA環境音暗号通貨現代アートFUZZLEAlteration粒子群最適化法RPG進化差分法オープンワールド群知能下川大樹AIFAウィル・ライト高津芳希P2E大石真史SIGGRAPH 2022BEiTStyleGAN-NADAレベルデザインDETRゲームエンジンSporeUnreal Engineデノイズ南カリフォルニア大学Unity for Industry画像処理SentropyGLIDECPUDiscordAvatarCLIPSynthetic DataCALMバイアスプログラミングサム・アルトマンソースコード生成LaMDAGMAIシチズンデベロッパーSonanticTRPGGitHubCohereウィザードリィMCN-AI連携モデルマジック:ザ・ギャザリングAI DungeonUrzas.ai介護西川善司並木幸介Kikiサムライスピリッツ森寅嘉Zoetic AIゼビウスSIGGRAPH 2021ペットストリートファイター半導体Digital Dream LabsTopaz Video Enhance AICozmo栗原聡DLSSタカラトミー山野辺一記NetEaseLOVOT大里飛鳥DynamixyzMOFLINRomiU-Netミクシィ13フェイズ構造アドベンチャーゲームユニロボットADVユニボXLandGatoAGIテキスト生成手塚眞DEATH STRANDINGマルチモーダル不気味の谷Eric Johnson汎用強化学習AIOculus Questコジマプロダクション生体情報デシマエンジンインディーゲーム写真高橋ミレイ照明Maxim PeterJoshua Romoffハイパースケープ山崎陽斗深層強化学習立木創太ミライ小町テスラGameGANパックマンTesla BotTesla AI Dayソサエティ5.0SIGGRAPH 2020バズグラフニュースタンテキ東芝DIB-R倉田宜典韻律射影広告韻律転移

パックマンだけではない。GANを使ったゲーム開発事例を紹介

2020.6.26ゲーム

パックマンだけではない。GANを使ったゲーム開発事例を紹介

実在しない人物の顔やオブジェクトに関するフォトリアルな画像を生成する技術であるGAN(Generative Adversarial Network:敵対的生成ネットワーク)は、その革新性が文字通り一目瞭然なために瞬く間に注目されるようになりました。最近ではGANの派生技術が次々と発明され、そうした技術はゲーム開発にも活用されています。この記事では、GANを使ったゲーム開発事例を紹介します。

ゲーププレイを見てゲームをコピー

大手GPUメーカーのNVIDIAは5月22日、アクションゲーム『パックマン』(1980年、ナムコ)の生誕40周年を記念して、GANを使って同ゲームを完全再現したことを発表しました。完全再現には、GameGANと命名された技術が使われました。

パックマンを再現するにあたっては、まずGameGANが模倣する学習データとして5万エピソード分のプレイ動画を用意しました。同技術はプレイ動画からステージの構造やパックマンなどの挙動を学習して、ゲームの仕様を特定していきます。この特定するプロセスを繰り返すと、最終的にゲームを完全再現できるようなるわけです。再現課程において注目すべきなのは、事前にソースコードとゲームの仕様が同技術に与えられていないというところです。

GameGANは、学習を通して動かない背景と動くキャラクターを区別できるようになります。それゆえ、ゲームの完全再現に成功すると、背景を他のものに差し替えて新たなゲームステージを生成することもできます。この技術を使えば、コーディングすることなく新規ゲームステージを生成することが可能となるのです。

GameGANの応用範囲は、ゲームだけに留まりません。将来的には、ロボットや自律自動車の制御に活用できると考えられています。例えば、自律走行車に搭載されたカメラから撮影した動画を学習データとして、この自律走行車を制御するAIモデルを開発することができます。

もっとも、GameGANにはルールを間違って学習する可能性があるので注意が必要です。ゲームメディアPolygonのパックマン再現を報じた記事によると、再現されたパックマンはプレイがうまくなりすぎて死なないために「パックマンは死ぬことがある」というルールを学習しなかったとのこと。同技術を現実世界の機械制御に応用する場合には、学ぶべきルールを学習したかどうかを検証する必要があるでしょう。

GANを使ってオープンワールドを構築

現代の大作RPGでは、オープンワールドと呼ばれるプレイヤーが自由に行動できる広大なマップが用意されていることが魅力のひとつとなっています。このオープンワールドの開発には、大規模なゲームスタジオであっても4〜5年を要するとも言われています。フリーランスのデータサイエンティストでありながらAI技術をゲーム開発に応用するアイデアについてMediumに投稿し続けているChintan Trivedi氏は、オープンワールド構築にGANを活用する試みに関する記事を投稿しました。

Trivedi氏が活用したのは、2018年にMITとNVIDIAの共同研究チームが発表したvid2vidというGANの派生技術です。この技術は、任意の動画を学習すると、その動画とそっくりな動画を生成できるというものです。同技術を使えば、用意した動画からオープンワールドの景観が生成できます。白紙の状態からオブジェクトを作り込んでオープンワールドを構築する方法と比較すると、同技術による景観の生成には多大な開発コスト削減が期待できそうです。

しかし、vid2vidの活用には大きな制約があります。オープンワールドでは時間の経過や天候の変化により、景観が暗くなったり晴れから雨に変わったりします。こうした景観の属性的な変化をvid2vidで再現しようとすると、属性ごとに学習する動画を用意しなければならないのです。こうしたvid2vidの制約を改善して開発された技術が、2019年にカリフォルニア大学バークレー校の研究者らによって発表されました。条件付き暗黙的最尤推定法(Conditional IMLE)と呼ばれる技術を使えば、単一の動画から属性の異なるそっくりな動画を生成できるのです。

Trivedi氏は、アクションゲーム『グランド・セフト・オートV』(2013年、ロックスター・ゲームス)から抽出した景観を学習データとして用意して条件付き暗黙的最尤推定法を使ってみたところ、予想通り同ゲームにそっくりな景観を昼夜の変化にいたるまで再現できました。こうして同技術を活用すれば、実写映像や過去のゲームの動画を流用して新たなオープンワールドが構築できることが実証されました。実証結果を受けて、10年以内にはAI技術を使ったオープンワールド開発が実用化されるだろう、と同氏は予想しています。

シェーディングもGANで実行

GANの活用事例はオープンワールド構築だけではありません。ゲームグラフィックデザイナーのYgor Rebouças Serpa氏は、ゲームキャラクター制作にGANを活用した自身の経験についてまとめた記事をMediumに投稿しました。同氏は2020年12月にリリース予定の2D格闘ゲーム『Trajes Fatais: Suits of Fate』(Onanim Studio)のキャラクター制作に関わっています。同ゲームは、レトロなピクセルアートで造形されたキャラクターが登場することが特徴となっています。このキャラクターの造形にGANを活用したのです。

ピクセルアートによる2Dキャラクターを制作するには、一般にデザイナーがラフなスケッチを描いた後に線で構成されたラインアートを作り、そのラインアートに立体的な陰影処理をほどこす「シェーディング」と細部に彩色する「リージョン」処理を行います。Serpa氏が関わった業務では、シェーディングとリージョン処理にGANを活用しました。使ったGANは、簡単な線画からリアルな彩色をほどこすことができるpix2pixです(pix2pixによる画像生成を確認できるデモページはこちら)。

シェーディングとリージョン処理のそれぞれにpix2pixを活用したところ、シェーディングに関しては人間のアーティストが彩色した場合と遜色のない出力結果が得られました。リージョン処理に関しては、複雑なデザインのキャラクターでは線からはみ出した色が目立ってしまい、実用には耐えられない結果となりました。

以上のような結果を受けてシェーディングにpix2pixを導入してキャラクター制作に導入したところ、人手でおこなった場合にはひとつのラインアートにつき平均して20~30分の作業時間を要するのに対して、同技術活用時には10~30分でした。従来ではラフスケッチからリージョン処理までに合計1時間かかっていたので10分の時間短縮、つまりは15%程度の作業効率化が実現したのでした。

pix2pixは2017年に発表された技術です。現在GANの派生技術に関する研究はさかんに行われているので、リージョン処理を人間と同等に実行できる技術は遠くない将来に現れるのではないか、とSerpa氏は予想しています。

以上のようにGANの派生技術を活用すると、ゲーム開発の効率化が期待できます。近い将来、ゲームエンジンやグラフィック制作ソフトにGAN関連技術が標準実装されるかも知れません。そうした技術は大作ゲームを制作する大規模スタジオと趣味でゲームを作るユーザの両方に恩恵をもたらすことでしょう。

Writer:吉本幸記

RELATED ARTICLE関連記事

データドリブンとモジュール性に貫かれた『BLUE PROTOCOL』のAIフィロソフィー

2021.3.22ゲーム

データドリブンとモジュール性に貫かれた『BLUE PROTOCOL』のAIフィロ...

AIを”嘘つき”に育てるために:「すごろくや祭」AIゲーム対戦ブースレポート

2019.8.13ゲーム

AIを”嘘つき”に育てるために:「すごろくや祭」AIゲーム対戦ブースレポート

【CEDEC2020】テストプレイや接待プレイができるAI技術でモリカトロンが目指すこと #CEDEC2020

2020.9.10ゲーム

【CEDEC2020】テストプレイや接待プレイができるAI技術でモリカトロンが目...

RANKING注目の記事はこちら