モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。
- TAG LIST
- CGCGへの扉生成AI安藤幸央吉本幸記月刊エンタメAIニュース河合律子機械学習OpenAIディープラーニングLLM大規模言語モデル音楽GoogleNVIDIAグーグルモリカトロンGAN森川幸人ChatGPT三宅陽一郎強化学習DeepMindStable Diffusion人工知能学会ニューラルネットワークシナリオQAマイクロソフトAIと倫理GPT-3自然言語処理SIGGRAPHFacebook倫理大内孝子映画スクウェア・エニックスルールベースアート著作権音楽生成AIキャラクターAI敵対的生成ネットワークゲームプレイAIMinecraftNPC3DCG動画生成AIデバッグモリカトロンAIラボインタビューアニメーションNFT画像生成VFXロボットファッションStyleGANプロシージャルディープフェイクDALL-E2マルチモーダル遺伝的アルゴリズム自動生成MidjourneyRed RamAdobeVRメタAIマンガテストプレイMeta画像生成AIインタビューゲームAI小説ボードゲーム深層学習CEDEC2019toio教育MicrosoftマインクラフトCLIPテキスト画像生成NeRF不完全情報ゲームビヘイビア・ツリーDALL-ECEDEC2021デジタルツインメタバースStability AIPlayable!高橋力斗GeminiSora作曲アストロノーカロボティクスナビゲーションAI畳み込みニューラルネットワークARアップルスポーツ手塚治虫汎用人工知能3D広告CEDEC2020AIアートはこだて未来大学エージェントGDC 2021バーチャルヒューマンメタデジタルヒューマンJSAI2022ELSIプロンプトGPT-4GDC 2019マルチエージェントHTNソニー栗原聡CNN懐ゲーから辿るゲームAI技術史鴫原盛之NVIDIA Omniverse市場分析東京大学CEDEC2022ジェネレーティブAIDALL-E 3言霊の迷宮CM音声認識UbisoftSIGGRAPH ASIA階層型タスクネットワークJSAI2020マーケティングMicrosoft AzureUnityアドベンチャーゲームインディーゲーム音声合成BERTOmniverseRobloxがんばれ森川君2号AIQVE ONE世界モデルGTC2023JSAI2023電気通信大学AppleGPT-4oJSAI2024ブロックチェーンイベントレポート対話型エージェントシーマン水野勇太ガイスター斎藤由多加YouTubeSF研究シムシティシムピープルTEZUKA2020スパーシャルAIElectronic ArtsメタデータTensorFlowキャリア模倣学習AmazonDQNSIEアバターGenvid TechnologiesStyleGAN2JSAI2021ZorkMCS-AI動的連携モデルモーションキャプチャーAGICygamesサイバーエージェント合成音声モリカトロン開発者インタビュー宮本茂則AWS徳井直生GTC2022NetflixUnreal Engineテキスト生成トレーディングカードメディアアートOpen AIベリサーブGPT-3.5音声生成AI松木晋祐Bardブラック・ジャック村井源稲葉通将マーダーミステリーCEDEC2023RunwayAmadeus Code人狼知能eSportsワークショップクラウドAlphaZeroAIりんなカメラ環世界中島秀之宮路洋一理化学研究所人事DARPAドローン人工生命ASBSぱいどんAI美空ひばり手塚眞GDC Summer岡島学eスポーツスタンフォード大学テニスBLUE PROTOCOLaibo銭起揚自動運転車TransformerGPT-2哲学現代アートバンダイナムコ研究所ELYZANVIDIA RivaチャットボットEpic GamesrinnaSNS松尾豊データマイニングゲームエンジンImagenバイアスサム・アルトマンデザインNEDO森山和道自動翻訳アーケードゲームセガ類家利直大澤博隆SFプロトタイピングコナミデジタルエンタテインメントtext-to-imagetext-to-3DDreamFusionAIロボ「迷キュー」に挑戦Adobe MAXPreferred NetworksPaLMGitHub CopilotGen-1ControlNet建築イーロン・マスクStable Diffusion XLAudio2FaceGoogle I/OFireflyTikTok立教大学KLabLLaMAハリウッドテキスト画像生成AI法律LoRA論文NianticXRApple Vision ProVeoCEDEC2024Runway Gen-3 AlphaスーパーマリオブラザーズWhiskSIGGRAPH Asia 2024GDC 2025JSAI2025CEDEC2025OpenAI Fiveピクサービッグデータナラティブ眞鍋和子齊藤陽介成沢理恵お知らせMagic Leap Oneサルでもわかる人工知能リップシンキングUbisoft La Forge知識表現IGDAどうぶつしょうぎジェイ・コウガミ音楽ストリーミングマシンラーニング5G対話エンジンシーマン人工知能研究所ゴブレット・ゴブラーズ完全情報ゲームウェイポイントパス検索藤澤仁画像認識DeNA長谷洋平ぎゅわんぶらあ自己中心派ウロチョロステンセントNBAフェイクニュースウィル・ライトレベルデザインGPUALifeオルタナティヴ・マシンサウンドスケープTRPGAI Dungeonゼビウス不気味の谷写真松井俊浩パックマン通しプレイ本間翔太馬淵浩希中嶋謙互レコメンドシステム軍事PyTorchモンテカルロ木探索バンダイナムコスタジオ田中章愛サッカーバスケットボールVAERNNウォッチドッグス レギオンHALOMITMuZeroRival Peakリトル・コンピュータ・ピープルコンピューティショナル・フォトグラフィー絵画シミュレーション坂本洋典釜屋憲彦生物学StyleCLIPmasumi toyotaTextWorldBingMagentaGTC2021CycleGANNetHackAIボイスアクター南カリフォルニア大学NVIDIA CanvasNetEaseナビゲーションメッシュ高橋ミレイ深層強化学習ELYZA DIGESTELIZALEFT 4 DEADプラチナエッグイーサリアムボエダ・ゴティエOmniverse ReplicatorNVIDIA DRIVE SimNVIDIA Isaac SimDisneyAI会話ジェネレーターグランツーリスモ・ソフィーVTuberフォートナイトQosmoポケモンCodexSoul Machinesバーチャルキャラクター対談GTC 2022SiemensクラウドコンピューティングOpenSeaGDC 2022Earth-2エコロジーELYZA Pencil医療キャラクターモーションRPGSIGGRAPH 2022LaMDAマジック:ザ・ギャザリング介護松原仁武田英明フルコトデータ分析MILEWCCFWORLD CLUB Champion Football柏田知大田邊雅彦トレカMax Cooper京都芸術大学ラベル付け秋期GTC2022野々下裕子pixivセキュリティ3DスキャンMicrosoft Designerイラスト柿沼太一ScenarioAIピカソAI素材.comAndreessen HorowitzQA Tech Night下田純也桑野範久DreamerV3大阪大学Blenderゲーム背景Point-EアパレルBIMGPTPhotoshopChatGPT4コミコパTencentTEZUKA2023大阪公立大学オムロン サイニックエックス橋本敦史宮本道人LLaMA 2Hugging FacexAIストライキVoyagerIBMソフトバンクSIGGRAPH2023音源分離ユニバーサルミュージックWeb3BitSummitファインチューニンググランツーリスモ北野宏明立福寛FSM-DNNMindAgent効果音NVIDIA ACE慶應義塾大学ヒストリアAI Frog Interactive新清士ComfyUISuno AIKaKa CreationVOICEVOXGPTs3D Gaussian SplattingGDC 2024ポケットモンスターSIMAGemma 2Inworld AIIEEE早稲田大学Apple IntelligenceWWDCWWDC 2024Perplexityくまうた濱田直希ソニー・インタラクティブエンタテインメント遊戯王佐竹空良九州大学伊藤黎Sakana AIByteDanceLINEヤフーDOOMGameNGen社員インタビューMovie GenPlayable!MobilePeridot早瀬悠真Veo 2SONYDeepSeekGDCCube 3DモリカトロンAIコネクトベンチマークHao AI LabClaudeモリカコミックジョージア工科大学MeshyVeo 3ゲーム映像パラメータ設計バランス調整エージェントシミュレーションDota 2ソーシャルゲーム淡路滋グリムノーツゴティエ・ボエダGautier BoedaJuliusTPRGバーチャル・ヒューマン・エージェントクーガー石井敦茂谷保伯マジック・リープノンファンジブルトークン里井大輝GEMS COMPANY初音ミク転移学習デバッギング北尾まどか将棋ナップサック問題SpotifyReplica Studioamuseクラウドゲーミング和田洋一StadiaSIGGRAPH 2019iPhoneAIGraph予期知能ドラゴンクエストPAIRアルスエレクトロニカ2019逆転オセロニア奥村エルネスト純齋藤精一高橋智隆ロボユニ泉幸典ロボコレ2019意思決定モデルLEFT ALIVE長谷川誠Baby Xロバート・ダウニー・Jr.The Age of A.I.レコメンデーションMOBA研修mynet.ai人工音声プレイ動画群知能Sporeデノイズ画像処理CPUGMAIウィザードリィ西川善司サムライスピリッツストリートファイター山野辺一記大里飛鳥13フェイズ構造Oculus Quest生体情報照明山崎陽斗立木創太GameGANソサエティ5.0SIGGRAPH 2020DIB-RApex LegendsNinjaTENTUPLAYMARVEL Future Fightタイムラプスバスキア階層型強化学習WANN竹内将セリア・ホデントUX認知科学ゲームデザインLUMINOUS ENGINELuminous Productionsパターン・ランゲージちょまどFPSマルコフ決定過程協調フィルタリングAlphaDogfight TrialsStarCraft IIFuture of Life InstituteIntelLAIKARotomationドラゴンクエストライバルズ不確定ゲームEmbeddingGTC2020NVIDIA MAXINEビデオ会議階層的クラスタリングtoio SDK for UnityGDMCMITメディアラボMagendaDDSPKaggleAssassin’s Creed OriginsSea of ThievesmonoAI technologyOculusテストBaldur's Gate 3Candy Crush SagaSIGGRAPH ASIA 2020BigGANMaterialGANReBeLVolvoRival PrakユービーアイソフトメタルギアソリッドVFSM汎用言語モデルChitrakar巡回セールスマン問題ジョルダン曲線リアリティ番組ジョンソン裕子MILEsインタラクティブ・ストリーミングインタラクティブ・メディアLudoArtEmisGROVERFAIRチート検出オンラインカジノRealFlowDeep FluidsMeInGameブレイン・コンピュータ・インタフェースBCILearning from VideoユクスキュルカントエージェントアーキテクチャOCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者StyleRigいただきストリート大森田不可止ザナック仁井谷正充Azure Machine Learning脱出ゲームHybrid Reward ArchitectureSuper PhoenixProject MalmoProject PaidiaProject LookoutWatch Forジミ・ヘンドリックスカート・コバーンエイミー・ワインハウスダフト・パンクGlenn MarshallStory2HallucinationJukeboxSIFTDCGANDANNCEハーバード大学デューク大学ローグライクゲームNeurIPS 2021ヒップホップ詩サイレント映画環境音粒子群最適化法進化差分法下川大樹高津芳希大石真史BEiTDETRSentropyDiscordCALMプログラミングソースコード生成シチズンデベロッパーGitHubMCN-AI連携モデル並木幸介森寅嘉SIGGRAPH 2021半導体Topaz Video Enhance AIDLSSDynamixyzU-NetADVXLandDEATH STRANDINGEric JohnsonコジマプロダクションデシマエンジンMaxim PeterJoshua Romoffハイパースケープミライ小町テスラTesla BotTesla AI Dayバズグラフニュースタンテキ東芝倉田宜典韻律射影韻律転移コンピュータRPGアップルタウン物語KELDICメロディ言語AstroEgo4D日経イノベーション・ラボ敵対的強化学習GOSU Data LabGOSU Voice AssistantSenpAI.GGMobalyticsAWS Sagemaker形態素解析AWS Lambda誤字検出SentencePiece竹村也哉GOAPAdobe MAX 2021Omniverse AvatarNVIDIA MegatronNVIDIA MerlinNVIDIA Metropolisテキサス大学AI Messenger VoicebotOpenAI CodexHyperStyleRendering with StyleDisneyリサーチGauGANGauGAN2画像言語表現モデルSIGGRAPH ASIA 2021ディズニーリサーチMitsuba2ワイツマン科学研究所CG衣装VRファッションArtflowEponym音声クローニングGopher鑑定Oxia PalusArt RecognitionNHC 2021池田利夫新刊案内マーベル・シネマティック・ユニバースMCUアベンジャーズDigital DomainMasquerade2.0フェイシャルキャプチャー山田暉LSTMモリカトロンAIソリューションコード生成AIAlphaCodeCodeforces自己増強型AICOLMAPADOPGANverse3DグランツーリスモSPORTGTソフィーFIAグランツーリスモチャンピオンシップDGX A100Webcam VTuber星新一賞Live NationWeb3.0AIOpsスマートコントラクトメディア政治NightCafeLuis Ruiz東京工業大学博報堂ラップZ世代AIラッパーシステムプラスリンクス ~キミと繋がる想い~STCStyle Transfer ConversationRCPRinna Character PlatformAmeliaGateboxANIMAK逢妻ヒカリセコムバーチャル警備システム損保ジャパン上原利之アッパーグラウンド品質保証AutodeskBentley SystemsワールドシミュレーターH100COBOLDGX H100DGX SuperPODInstant NeRFartonomousbitGANsコミュニティ管理オンラインゲーム気候変動マックス・プランク気象研究所ビョルン・スティーブンス気象モデル気象シミュレーション環境問題SDGsメモリスタ音声変換Veap JapanEAP福井千春メンタルケアEdgar Handy東京理科大学産業技術総合研究所リザバーコンピューティングソニーマーケティングもじぱ暗号通貨FUZZLEAlterationオープンワールドAIFAP2EStyleGAN-NADAUnity for IndustryGLIDEAvatarCLIPSynthetic DataSonanticCohereUrzas.aiKikiZoetic AIペットDigital Dream LabsCozmoタカラトミーLOVOTMOFLINRomiミクシィユニロボットユニボGato汎用強化学習AIロンドン芸術大学Google BrainSound ControlSYNTH SUPERKarl SimsArtnomeICONATE浜中雅俊福井健策WikipediaSphereXaver 1000養蜂Beewiseフィンテック投資MILIZE三菱UFJ信託銀行西成活裕群衆マネジメントライブビジネス新型コロナ周済涛清田陽司サイバネティックス人工知能史AI哲学マップ星新一StyleGAN-XLStyleGAN3GANimatorVoLux-GANProjected GANSelf-Distilled StyleGANニューラルレンダリングPLATOframe.ioFoodly中川友紀子アールティBlenderBot 3Meta AIマーク・ザッカーバーグWACULAIライティングAIのべりすとQuillBotCopysmithJasperヴィトゲンシュタイン論理哲学論考PromptBaseバンダイナムコネクサスユーザーレビューmimicBaiduERNIE-ViLG古文書凸版印刷AI-OCR画像判定実況パワフルサッカー桃太郎電鉄桃鉄パワサカ岩倉宏介PPOMachine Learning Project Canvas国立情報学研究所石川冬樹スパコンスーパーコンピュータ松岡 聡TSUBAME 1.0TSUBAME 2.0ABCI富岳Society 5.0夏の電脳甲子園座談会NVIDIA GET3DAI絵師UGCPGCNovelAINovelAI Diffusionモーションデータポーズ推定メッシュ生成メルセデス・ベンツMagic LeapEpyllionマシュー・ボールムーアの法則Adobe MAX 2022Adobe ResearchGalactica映像解析東芝デジタルソリューションズSATLYS 映像解析AIPFN 3D ScanPFN 4D ScanDreamUpDeviantArtWaifu Diffusion元素法典Novel AICALAアフォーダンスPaLM-SayCanCode as PoliciesCaPコリジョンチェック山口情報芸術センター[YCAM]YCAMアンラーニング・ランゲージカイル・マクドナルドローレン・リー・マッカーシー鎖国[Walled Garden]プロジェクトSIGGRAPH ASIA 2022VToonifyControlVAE変分オートエンコーダーフォトグラメトリ回帰型ニューラルネットワークDeepJoinAzure OpenAI ServiceDeepLDeepL Writeシンギュラリティレイ・カーツワイルヴァーナー・ヴィンジRunway ResearchMake-A-VideoPhenakiDreamixText-to-ImageモデルLatitudeneoAIDreamIconmignstudiffuse対話型AIモデルnotenote AIアシスタントKetchupAI NewsArt SelfieArt TransferPet PortraitsBlob OperaクリムトクリティックネットワークアクターネットワークDMLabControl SuiteAtari 100kAtari 200MYann LeCun鈴木雅大コンセプトアートColie Wertzリドリー・スコット絵コンテストーリーボードPaLM APIMakerSuiteSkebDreambooth-Stable-DiffusionGoogle EarthGEPPETTO AIStable Diffusion web UIAI modelAI ModelsZMO.AIMOBBY’SモビーディックダイビングアウトドアAIスキャニング自動採寸3DLOOKSizerワコールスニーカーUNSTREETNewelseCheckGoods二次流通中古市場Dupe Killer偽ブランド配信ソニー・ピクチャーズ アニメーションFosters+PartnersZaha Hadid ArchitectsライブポートレイトWonder Studio土木インフラAmazon BedrockX.AIX Corp.TwitterXホールディングスMagiSDXLRTFKTNIKEClone X村上隆Digital MarkSnapchatクリエイターコミュニティバーチャルペットNVIDIA NeMo Serviceヴァネッサ・ローザVanessa A Rosa陶芸Play.ht音声AILiDARPolycamdeforumハーベストForGamesゲームマーケット岡野翔太郡山喜彦ジェフリー・ヒントンGoogle I/O 2023武蔵野美術大学BingAILightroomCanvaBOOTHpixivFANBOX虎の穴Fantiaとらのあな集英社少年ジャンプ+ComicCopilotゲームマスターInowrld AIMODGhostwriterSkyrimスカイリムRPGツクールMZChatGPT_APIMZダンジョンズ&ドラゴンズOracle RPG深津貴之xVASynthLaser-NVMERFAlibabaVQRFnvdiffrecNeRFMeshingLERFマスタリングリアム・ギャラガーグライムスBoomyジョン・レジェンドザ・ウィークエンドドレイクエッジワークス日本音楽作家団体協議会FCAVoiceboxさくらインターネットぷよぷよTCGQRコード囲碁デンソーデンソーウェーブ原昌宏日本機械学会ロボティクス・メカトロニクス講演会トヨタ自動車かんばん方式プロット生成FastGAN4コママンガElevenLabsHeyGenAfter Effects絵本出版Ammaar ReshiStoriesStoryBirdVersedProlificDreamerUnity SentisUnity MuseCaleb Ward宮田龍清河幸子西中美和安野貴博斧田小夜CM3leonStable DoodleT2I-Adapter日本マネジメント総合研究所Lily Hughes-RobinsonColossal Cave AdventureAdventureGPTリリー・ヒューズ=ロビンソンBabyAGIGPT-3.5 Turboカーリングウィンブルドン戦術分析パフォーマンス測定IoTProFitXWatsonxAthleticaコーチング北見工業大学北見カーリングホール画像解析じりつくんNTT SportictAIカメラSTADIUM TUBEPixelllot S3AIスマートコーチDreamboothヤン・ルカンPerfusionニューラル物理学毛髪荒牧英治中ザワヒデキ大屋雄裕中川裕志Adreeseen HorowitzNVIDIA Avatar Cloud EngineReplica StudiosSmart NPCsRoblox StudioPromethean AIMusiioEndelSonarSonar+DDolby AtmosSonar Music Festivalライゾマティクス真鍋大度花井裕也Ritchie HawtinErica SynthUfuk Barış MutluJapanese InstructBLIP Alpha日本新聞協会AIいらすとやAI PicassoEmposyAIタレントAIタレントエージェンシーmodi.aiBitSummit Let’s Go!!デジタルレプリカGOT7synthesiaHumanRFActors-HQSAG-AFTRAWGAチャーリー・ブルッカー岡野原大輔自己教師あり学習In-Context Learning(ICL)量子コンピュータqubitIBM Quantum System 2ダリオ・ヒルジェン・スン・フアンHuggingFaceStable Audio宗教仏教コカ・コーラ食品Coca‑Cola Y3000 Zero SugarCopilot Copyright Commitmentテラバース京都大学音声解析感情分析周 済涛ステートマシンディープニューラルネットワークハイブリッドアーキテクチャAdobe Max 2023Bing ChatBing Image CreatorAssistant with BardThe ArcadeSearch Generative ExperienceDynalangVLE-CEAI ActEUArs ElectronicaAI規制欧州委員会欧州議会欧州理事会MusicLMAudioLMMusicCapsAudioCraftMubertMubert RenderGen-2Runway AI Film FestivalPreVizCharacter-LLM復旦大学Chat-Haruhi-Suzumiya涼宮ハルヒEmu VideoペリドットDream TrackMusic AI ToolsLyriaYahoo!知恵袋インタラクティブプロンプトAI石渡正人手塚プロダクション林海象古川善規大規模再構成モデルLRMObjaverseMVImgNetOne-2-3-453Dガウシアンスプラッティングワンショット3D生成技術FGDCFuture Game Development Conference佐々木瞬Anique中村太一エグゼリオCopilotserial experiments lainAI lainPCGPCGRLDungeons&Dragonsビートルズザ・ビートルズ: Get BackDemucs音楽編集ソフトAdobe AuditioniZotopeRX10MoisesレベルファイブGenie AISIGGRAPH Asia 2023C·ASEFLAREダンスMagicAnimateAnimate Anyoneインテリジェントコンピュータ研究所アリババDreaMovingVISCUITScratchスクラッチビスケットプログラミング教育VALL-EDeepdub.aiAUDIOGENEvoke MusicAutoFoleyColourlab.AiディズニーLargo.aiCinelyticTaskadePika.artAI Filmmaking AssistantAI Screenwriter芥川賞文学恋愛タップルAbema TVNEC木村屋GPT Store生成AIチェッカーユーザーローカル九段理江東京都同情塔4Dオブジェクト生成モデルAlign Your GaussiansAYGMAV3Dファーウェイ4D Gaussian Splatting4D-GSGlazeWebGlazeNightShadeSpawningHave I Been Trained?FortniteUnreal Editor For FortniteVolumetricsAIワールドジェネレーターRosebud AI GamemakerLayerCharisma.ai調査Meta QuestIP強いAI弱いAILumiereUNetImageFXMusicFXTextFXKeyframerGemini 1.5AI StudioVertex AIChat with RTXSlackSlack AIPokémon Battle Scopekanaeru占い行動ロジック生成AIConvaiNTTドコモEmemeGenie汎用AIエージェントAIファッションウィークインフルエンサーGrok-1Mixture-of-ExpertsMoEClaude 3Claude 3 HaikuClaude 3 SonnetClaude 3 Opus森永乳業C2PAゲーミフィケーションTomo KiharaPlayfool遊びtsukurun地方創生吉田直樹素材OpenAI JapanVoice EngineCommand R+Oracle Cloud InfrastructureGoogle WorkspaceUdio立命館大学京都精華大学TacticAINPMPFOOHProject AstraGoogle I/O 2024感情認識音声加工マルタ大学田中達大Move AIICRA2024大規模基盤モデルTorobo東京ロボティクスインピーダンス制御深層予測学習日立製作所尾形哲也AIREC汎用ロボットオムロンサイニックエックスViLaInPDDLニューサウスウェールズ大学Claude Sammutオックスフォード大学Lars Kunze杉浦孔明田向権VASA-1VoxCeleb2AniTalker上海大学LumaDream MachineNTTAI野々村真GPT-4-turbo佐藤恵助大道麻由物語構造分析慶応義塾大学渡邉謙吾ここ掘れ!プッカ大柳裕⼠加納基晴研究開発事例赤羽進亮UDI(Universal Duel Interface)第一工科大学小林篤史荻野宏実ビヘイビアブランチWPPGeneral Computer Control(GCC)CradleSpiral.AIItakoLLM-7b静岡大学明治大学北原鉄朗中村栄太日本大学ヤマハ前澤陽増田聡採用科学史AIサイエンティストTerraAI Overview電通AICO2BitSummit DriftOmega CrafterSPACE INVADIANS西島大介吉田伸一郎SIGGRAPH2024Motion-I2VToonify3D生成対向ネットワーク拡散モデルDiffusionうめ小沢高広ドリコムai andSaaSインサイトカスタマーサポートComfyUI-AdvancedLivePortraitGUIVideo to VideoiPhone 16OpenAI o1AIスマートリンクシャープウェアラブルCE-LLMCommunication Edge-LLMAIペットYahoo!ニュースAI Comic FactoryAI comic GeneratorComicsMaker.aiLlamaGen.aiGAZAIFlame Planner動画ゲーム生成モデルVirtuals ProtocolMarioVGG松原卓二Art Transfer 2Art Selfie 2Musical CanvasThe Forever LabyrinthRefik AnadolAlexander RebenRhizomatiksMolmoPixMoQwen2 72BDepth ProVARIETASAI面接官キリンホールディングス空間コンピューティングDream ScreenSynthIDFirefly Video ModelStable Video 4DAI受託開発事例田中志弥Playable!3DAdobe MAX 2024SneaksIllustratorMeta Quest 3XR-ObjectsOrion防犯O2Scam DetectionLive Threat Detection乗換NAVITIMEKaedim3DFY.aiLuma AIAvaturnBestatOasisDecartDejaboom!UnboundedEtched声優パブリシティ権日本俳優連合日本芸能マネージメント事業者協会日本声優事業社協議会IAPPTripo 2.0Meta 3D Genスマートシティ都市計画松本雄太Genie 2World LabsCybeverThird Dimension AI東北大学Gemini 2.0フロンティアワークス機械翻訳SimplifiedAI Voice over GeneratorAI Audio EnhancerエーアイAITalkコエステーションPlayStationVRMLTechno Magicゴーストバスターズスパイダーマンポリフォニー・デジタル荒牧伸志Project SidAlteraRobert YangRazerProject AVAStreamlabsIntelligent Streaming AssistantProject DIGITSスーパーコンピューターエージェンテックAI Shortsテルアビブ大学DiffUHaulTrailBlazerヴィクトリア大学ウェリントンzeroscopeQNeRFカーネギーメロン大学RALFグラフィックメイクCanvasProjectsDeepSeek-R1LoopyリップシンクCyberHostOmniHuman-1CSAMImagen 3Google LabsMicrosoft Museゲーム生成モデルWHAMデモンストレーターChatGPT Edu滋賀大学キリンビール桜AIカメラSolist-AIロームFactorioカリフォルニア大学GamingAgentAnthropicClaude 3.7 SonnetFactorio Learning EnvironmentFLEDeepseek-v3Gemini-2-FlashLlama-3.3-70BGPT-4o-MiniZOZO NEXTZOZOFashion Intelligence SystemPartial Visual-Semantic EmbeddingWEARGPT-4Vソイル大学AIパズルジェネレーターDolphinGemmaWild Dolphin ProjectSoundStreamトークナイザー音声処理技術GPT-4.1GPT-4.1 miniGPT-4.1 nanoLINE AILINE AIトークサジェストGTC2025Fuxi LabNaraka:Bladepoint MobileバトルロイヤルビヘイビアツリーSoftServeALNAIRAMRIBLADEGAGAQUEENRunway Gen-4SkyReelsStable Virtual CameraIntangibleブライアン・イーノEnoBrain OneAlphaEvolveContinuous Thought Machine(CTM)ArmStable Audio Open SmallWord2WorldSTORY2GAMEウィットウォーターランド大学森川の頭の中花森リドGoogle I/O 2025FlowLyra 2MusicFX DJAnimon.aiツインズひなひまMayaDeep Q-LearningAlphaGOスペースインベーダープリンス・オブ・ペルシャドラゴンクエストIV堀井雄二山名学タイトーカプコンUbi AnvilエンジンV1 Video ModelArtificial AnalysisVideo ArenaVideo Model LeaderboardClaude 3.5Mistral樋口恭介Claude 4小川 昴ホラーゲームStable Diffusion 1.5階層型物語構造夏目漱石漱石書簡京都情報大学院大学上野未貴ブラウザCometKiroAww Inc.Visual BankTHE PENFUJIYAMA AI SOUND富士通西浦めめヘッドウォータース下斗米貴之ディプロマシーOpenAI o3Cluade Opus 4ChatGPT o3カリフォルニア大学サンディエゴ校Everyテトリス逆転裁判Gemini 2.5-proGPT-5ロゼッタ広報MavericksNoLang 4.0gpt-oss金井大組織作りCygnusTaurus笠原達也バグチケット都築圭太仁木一順ライフレビューSIGGRAPH 2025Text-to-MotionMiegakure
「今日のメシどうする?」問題から学ぶ、階層型タスクネットワーク
株式会社ディー・エヌ・エーは、エンジニア向けの勉強会「GDM vol.37 エンジニア向け勉強会 ゲームAIにおける意思決定と地形表現〜『LEFT ALIVE』を事例に紹介〜」を開催しました。講師として迎えられたのは、スクウェア・エニックスの長谷川誠氏です。
サバイバルアクションゲーム『LEFT ALIVE』(2019年、スクウェア・エニックス)は、複雑な手順のアクションを実行するAIが求められるため、キャラクターAIの意思決定にHTN(階層型タスクネットワーク)を採用し、長いスパンの行動計画の生成に対応できるようにしました。
今回はHTNを採用した背景と、ご飯を用意して食べるという身近な生活にたとえたHTNの具体的な説明、実際に『LEFT ALIVE』でどのようにHTNの実装をしたかなどについて解説がされました。
HTNを採用した背景
『LEFT ALIVE』は、シリコンスタジオのゲームエンジンOROCHIを採用。ゲームAIの機能もあったものの、『LEFT ALIVE』の複雑さに耐えらないと判断したため、AIのアーキテクチャを自作することにしました。
候補として挙がったのは、
- ビヘイビア・ツリー
- 階層型ゴール思考
- HTN
- GOAP
この4つのアーキテクチャでした。この中から企画の細かい要望に対しつつ複雑な状態を捉えられてノード数を爆発させて扱いきれなくなることは避けられる方法を選びました。
ビヘイビア・ツリーはアンリアルエンジンにも標準搭載されており、採用事例も多くて手堅い選択肢のように思われました。しかし、ノード数が増えすぎる懸念があったためこのときは選択肢から外されました。GOAPはノード数を減らせるものの、企画の局所的な部分における細かい対応が十分にできないため、こちらも今回の選択肢から外したとのことです。
最終的に『LEFT ALIVE』の開発では、すでに長谷川氏も開発経験のある「階層型ゴール思考」と、局所的な対応ができてノード数も増えすぎない「HTN」を採用しました。
両者は、HTNは抽象度の大きいタスクを分解する際に使い、階層型ゴール思考は、抽象度の低いものに使用するという形で使い分けました。
HTNに関わる各用語の解説
HTNはHierarchical Task Networkの略で日本語では階層型タスクネットワークと呼ばれています。これはネットワーク状につながっている多くのタスクに処理を加えることで、自動的に目的に沿ったタスクのリストにする機能です。
HTNの構成要素は大きく分けて「ワールドステート」、「タスク」、「プラナー」の3つがあります。タスクは「プリミティブタスク」と「コンパウンドタスク」に分かれ、それぞれの要素があります。これらをまとめて「ドメイン」と呼んでいます。
ワールドステート
ワールドステートは、自分の状態もふくめたゲームの世界全体の状態です。『LEFT ALIVE』には、ワールドステートが143種類あります。
プリミティブタスク
プリミティブタスクは、世界に影響を与える行動を表すもので、次の3つの要素でできています。
- プリコンディション
- オペレータ
- エフェクト
プリコンディションは、タスクを実行するために必要な条件で、オペレータは実際に行う行動。エフェクトはオペレータの行動でワールドステートどのように変わるかが記述されているものです。
コンパウンドタスク
コンパウンドタスクは、タスクが達成すべき結果に至る方法を記述した「メソッド」を複数持ちます。メソッドは、自分が選ばれるための条件となる「コンディション」と、選ばれたときのタスクのリストを持っています。コンパウンドタスクにはメソッドが複数ありますが、どれを選んでもコンパウンドタスクが求める結果(この場合は「ご飯を食べる」)になるようにメソッドを記述しておきます。
ドメイン
プリミティブタスクやコンパウンドタスクが入っているフレームをドメインと呼びます。
プラナー
ワールドステートを参照・編集しながら、ドメインをタスクのリストに変えていく機能がプラナーです。
ご飯どうする?から学ぶHTN
次に長谷川氏はプランニングのアルゴリズムについて、「ご飯を食べる」というタスクを実行するためのドメインを例にHTNの仕組みを解説しました。まずコンパウンドタスクとして「食事する」というタスクを設定。メソッドを2つ用意しました。
メソッド1:「ご飯がある」という条件を満たせば「ご飯を食べる」
メソッド2:条件が「常に真(どんな状態でも選ばれる)」。「ご飯を買いに行く」、「食事する」というコンパウンドタスクが存在。
つまりここには「ごはんを食べる」というプリミティブタスクと、「ごはんを買いに行く」というプリミティブタスクがあるということです。
プランスタックは、プランを作るにあたって必要な機能を分解していく過程を積んでおく場所です。プランニング中のワールドステートは現在の状態を表しています。
この状態からプランニングを開始します。
ケース1:すでにあるご飯を食べる
初期状態の「ご飯ある」という状態を用意した上で、「食事する」というタスクを分解していくことでタスクのリストを作ります。
まずはプランスタックに入っている、「食事をする」というタスクを取り出します。取り出したら、メソッドに付随するプリコンディンションを確認し、現在の状態である「ご飯ある」と一致するメソッドを探します。この場合、メソッド1を採用します。
採用したら、メソッド1にある「ごはんを食べる」というタスクを、プランスタック(黄色い箱)に積みます。
この状態から、またさらにプランスタックに積まれている「ご飯を食べる」というタスクを取り出して、「食べる」というオペレータプランリスト(黒い箱)に追加します。それを実行することでエフェクトをワールドステートに適応させることができます。その結果、プランスタックが空になり、ワールドステートが「ご飯なし」「お腹いっぱい」という状態になるので、プランニングは終了します。
ケース2:買ってきたご飯を食べる
次にワールドステートの初期状態を「ご飯なし」「お金ある」に変更した上で「食事する」というタスクを分解していきます。
先ほどと同様に、プランスタックから「食事する」というタスクを取り出します。今度は「ご飯がある」というプリコンディションに対応できないので、メソッド2の「常に真」が採用されます。採用されたら、サブタスクのリスト「ご飯を買う」「食事する」をプランスタックに積みます。
するとこの状態になります。その次に「ご飯を買う」というタスクを取り出します。この時は「お金あり」の条件を満たしており、このプリミティブタスクが実行できるため、「ご飯を買う」というタスクがプランリストに追加されます。
無事買い物ができたので、「ご飯がある」、「お金なし」というエフェクトをワールドステートに適用します。
そうすると、この状態になります。
プランスタックにある「食事する」を取り出します。今度は「ご飯がある」のプリコンディションのメソッド1を採用できるため、「ご飯を食べる」がプランスタックに追加されます。ケース1の展開と同様に、「ご飯を食べる」が取り出されて追加され、「お腹いっぱい」「ご飯なし」になります。これでプランスタックが空になるので、プランニングは終了です。
失敗するケース
こちらのケースはプランニングが失敗して、最終的にご飯を食べられないケースです。ワールドステートは「ご飯なし」「お金なし」です。まず「食事する」を取り出します。このとき「ご飯がある」が対応していないので、「常に真」のメソッド2を採用してプランスタックに積みます。本来なら「ご飯を買う」が実行されるはずですが、ワールドステートを見ると「お金なし」なので、このタスクは実行できずに失敗します。
プリコンディションで失敗した場合は、最後にコンパウンドタスクを展開する前の状態に戻します。今回の場合は、プランスタックに「食事をする」というタスクが積まれている状態まで戻します。その上で失敗するのが分かっているメソッド(この場合はメソッド2)を選択対象にしないようにします。
そうなると、今度は今のワールドステートは「ご飯がある」に対応できるものではないので、メソッド1も採用できません。結局すべてのメソッドが採用されずに終わります。
全順序タスクと半順序タスク
タスクには「全順序タスク」と「半順序タスク」の2種類があります。全順序タスクは一つひとつ順番に実行しなくてはならず、同時平行で処理できないタスクです。例えば、お湯を沸かして、カップラーメンにお湯を注いで、3分待つという3つのタスクは必ず順番に実行しなければなりません。お湯を沸かしながらカップラーメンにお湯を注ぐことは、お湯がそもそもないのでできませんし、3分待つのを実行するタイミングも順番を変えるとおかしなことになります。
一方で、同時平行で処理できるタスクのことを半順序タスクと呼びます。ごはんを炊きながらカレーのルーを作ることは同時にできます。このように同時並行でできるタスクを半順序タスクといいます。
ここまでのまとめ:HTNを活用することで、ワールドステートをプリミティブタスクのエフェクトを使って仮想的に変更しつつ、将来に向かって一貫性のあるプランを立てることができます。また、ビヘイビア・ツリーのようなツリー形ではないため、比較的柔軟な組み方が可能です。
『LEFT ALIVE』に実装されたHTN
『LEFT ALIVE』のHTNリストは『Game AI Pro』の12章に掲載されたHTNの説明を参考に実装されました。
この時は半順序タスクは扱わない、タスクは引数を取らない、プランの良し悪しはメソッドが並んでいる順番並、というシンプルな形で実装しました。とはいえ、そのままでは実用に不十分だったため、『LEFT ALIVE』に最適化するためにHTNの機能の拡張を行ったとのことです。そのプロセスにおける課題と解決をそれぞれ解説されました。
オペレータ並列実行
当初は半順序タスクを扱わないHTNを実装したため、例えばシールドを構えながら移動をするなど、「〇〇しながら××」というタスクが処理できないという問題が生じました。そこで、プリミティブタスクに複数のオペレータを登録して同時に実行できるようにしました。移動というオペレータ、射撃というオペレータ、リロードというオペレータはすべて別々にあり、これらをドメイン上で組み合わせることで複数の動作を同時並行で実行しているように見せることに成功しました。
成功コンディション
10メートル以内まで敵に近づくのと、自分から敵が見えるまで敵に近づくのはほぼ同じタスクです。このように同じようなプリミティブタスクのオペレータを共通の実装にしたいという課題もありました。解決策としては、成功終了する条件をプリミティブタスクに持たせることで、複数のオペレータを用意しなくても組み合わせで実行できるようにしました。
成功タイムアウト/失敗タイムアウト
旋回速度が遅く、なかなか正面にとらえられないため、諦めて次のアクションを実行する(タスクが成功して次に行く)。近づいて攻撃したいけれど、なかなか近づけないので、攻撃をやめる(タスクの失敗)といったタイムアウトの処理をオペレータごとに実装するのも煩雑で手間のかかる作業です。この課題については、プリミティブタスクのデフォルトの機能として実装することで解決しました。
プリミティブタスクのクールタイム
強力なボスの攻撃を連続で実行させたり牽制のグレードや強い攻撃を連発させないように、プリミティブタスクのクールタイムをデフォルト機能として設定しました。1回実行したプリミティブタスクはヒートアップの状態になるので、クールダウンしている最中にはプリコンディションが常に「false」の状態になります。
優先実行時間
ボスのガトリング攻撃は、まず攻撃態勢の動きをしてから、ある一定のループ時間を経て、最後に終了のモーションで終わるという比較的長めのモーションを再生します。これは、ある間合いに入ると再生されますが、その間合いから外れるとモーションを停止してしまいます。そのためプレイヤーが頻繁に動き回ると、再生と停止が頻繁に発生して不自然な演出になってしまいます。それを避けるために、1回モーションの再生を実行したら、ある程度の時間は裏側で作成されるリプランを行わない機能を実装しました。
リプランニング
優先実行時間に関わるのがプランのリプランニングです。ゲームの状態は常に変化し続けるので、プランを立てた瞬間から、そのプランを実行する環境が変化してしまうため、プランを実行している最中に常にバックグラウンドで優先度の高いプランを立て続けます。リプランニングの周期は、部隊のエージェントに関しては0.5秒おき、部隊に関しては2秒おきにリプランニングをかけていきます。
このように実行中のプランがあり、優先度の高いプランができたら次々に置き換えます。プランの優先度は、コンパウンドタスク内のメソッドの若い番号順です。
優先度の高いプランへの置き換えをする場合、単純にそのまま入れ替えてよい場合と、現在実行中のプランと上手くマージしなければならない場合があります。例えばここでは「ラーメンを作る」というタスクを実行している次に「フォークで食べる」が置かれてしまっています。しかし優先度が高いのは「ラーメンを作る」の次に「箸で食べる」のタスクが待機しているプランです。
ここを入れ替えたいなど、何かしらの理由でプランを置き換えるとき、分岐点が現在実行中のタスクより上位のメソッドの場合は、現プランを全部破棄して新しいプランに置き換えます。抽象度の高いところで分岐しているということは、実行しようとしている内容自体が変わっているので全部置き換えても問題ないはずです。下位のメソッドで分岐している場合は、現在実行中のタスクをそのまま実行して、未実行のタスク部分だけを置き換えます。
「食事する」「食べる」という簡単なドメインがあって、現在実行中のプランは「ケーキを買う」だとします。その次に「フォークで食べる」というタスクが控えています。このとき例えばケーキを買いに行く途中でカップラーメンを発見した場合、新しいプランが立てられます。
その場合、「ラーメンを調理する」「箸で食べる」の方がメソッドの順番的には優先度が高くなります。このときに「ケーキを買う」から展開するメソッド自体が変わるため、当初のプランをすべて捨てて入れ替えます。
次に、今度は「ラーメンを調理する」「フォークで食べる」の順で実行しようとしていたところ箸を入手したので、フォークではなく箸で食べようと次のプランが立てられます。「ラーメンを調理する」はそのまま実行し、下位の分岐で「フォークで食べる」を「箸で食べる」に入れ替えます。
この場合はコンテクストの一部を入れ替える処理で済みましたが、すべてのプランを入れ替えなければならないケースもあります。例えばゲームの中で非戦闘状態から戦闘状態に変わる、ターゲットが変わるなどで、そもそもやろうとしていること自体が変わってしまったケースです。
プリミティブタスクの実行をしている最中に起きたアクシデントへの対応についても解説がありました。例えばラーメンを作って箸で食べている最中に箸を落としてしまったとします。このときにすべてのタスクをリプランニングし直すのは負荷がかかる上に、何をやっていたかも破棄されて全然関係ないプランが立てられてしまう可能性もあります。
この場合、「箸で食べる」のタスクをふくむメソッドを選択対象外とし、すでにあるプラン「フォークで食べる」と差し替える形で、部分的にプランニングをかけます。
つまり「ラーメンを調理する」をすでに実行されていて「箸で食べる」も実行されていたとき、何かしらの理由で箸が使えなくなったら、「箸で食べる」というメソッドをふくんでいたコンパウンドタスクを、ルートタスクとして部分的にプランをし直します。そして「フォークで食べる」を失敗した部分と差し替えて、既存のコンテキストをできるだけ維持した形で再度プランを組み立てます。さらに失敗履歴を取っておき、差し替わったプランがすべて正常終了するまでそれを保持し続けることで、失敗したメソッドが選ばれないようにします。
HTNは必ずしも銀の弾丸ではない
ここまでがHTNの概要と実装の事例についての解説でしたが、HTNは必ずしも万能ではありません。実際に導入するにあたり、さまざまな課題や失敗があったとのことです。例えば、HTN用のツールがないことで、あるプランをなぜ採用したか(あるいは採用しなかったか)のログを追いづらいため、デバッグなどの精度を上げにくいという課題があります。「HTNをやるのであれば、あるドメインからプランが生成される過程がグラフィカルに見られる環境でないとかなり厳しいです」と長谷川氏は指摘します。
HTNを開発できる人材の不足も大きな課題です。アンリアルエンジンでデファクトスタンダードになっているビヘイビア・ツリーとは異なり、お金を使って人材を確保することも、そもそもの人材が不足しているためできません。現状としては、HTNを採用するのであれば、ビヘイビア・ツリーとのハイブリッドシステムで柔軟に人員配置をできる環境にしておかないと難しいと長谷川氏は語ります。
HTN自体をシンプルにしすぎたことで生じた問題もありました。前述の『Game AI Pro』12章を参考に実装したHTNは、ごくシンプルであるがゆえに複雑なことをしたい場合は自力でドメインを書く他ありません。そのため『LEFT ALIVE』のプリミティブタスク数は通常兵士だけでも300を超えてしまいました。HTNを採用するのであれば、タスクに引数を渡せるシステムは必須とのことでした。
HTNだけで頑張ろうとせず、ビヘイビア・ツリーと組み合わせることで負荷を減らせるというのも実際に採用したことで得た発見だといいます。『LEFT ALIVE』のドメインの上位部分は、HTNである必要のない構成で、ビヘイビア・ツリーのプライオリティノードとまったく同じことをしています。さらにビヘイビア・ツリーの方が動作が軽く、必要のないワールドステートが増えることも防げます。従ってHTNは、指向の一番上から一番下ではなく、真ん中部分に採用するのが合理的です。最上位にあるビヘイビア・ツリーやUtilityが何をしたいかを決定し、その後にHTNが走って実際に何をどういう順番で行うかを決めた後に、細かいタスクの実装をビヘイビア・ツリーが行う構成が一番良いとのことでした。
このようにHTNは一貫性のあるプランを立てることができるものの、採用するにあたってツールや環境、人材面で非常に高いハードルがあります。とはいえ使う場所を選ぶことで、他のアーキテクチャで実行しようとすると煩雑になる作業を比較的小さいノード数で組むことができます。長谷川氏がHTNの導入に最適なタイトルとして挙げたのがシェフとなり、客からの注文に応じて食材や食器などの在庫を管理しながら料理を出すゲーム『Overcooked』(2016年、Ghost Town Games)です。サブタスクと複雑な依存関係があるタスクを処理しなければならず、かつタスクの順番が必ずしも固定されていないためHTNを活用したプランニングが向いているとのことでした。
Editor:高橋ミレイ