モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
機械学習ディープラーニングCGCGへの扉GAN強化学習ニューラルネットワークモリカトロンAIラボインタビュー三宅陽一郎月刊エンタメAIニュースQA音楽敵対的生成ネットワークCEDEC2019デバッグOpenAIスクウェア・エニックスCEDEC2020ゲームAI不完全情報ゲーム深層学習シナリオAIと倫理ビヘイビア・ツリーNVIDIA映画SIGGRAPHGDC 2019VRキャラクターAIボードゲームルールベースグーグルDeepMindFacebookVFX遺伝的アルゴリズムメタAI畳み込みニューラルネットワークロボットファッションGoogleStyleGANプロシージャルJSAI2020人工知能学会イベントレポート森川幸人水野勇太ガイスターマイクロソフトtoioCNNTensorFlowGDC SummerモリカトロンマルチエージェントナビゲーションAIeSports小説自然言語処理AlphaZero環世界中島秀之アートHTN階層型タスクネットワークスポーツ自動生成研究ディープフェイクDARPAGPT-3メタデータOpenAI Five本間翔太CM倫理ピクサーAdobe作曲中嶋謙互Amadeus Codeキャリアテストプレイeスポーツ音声認識PyTorchDQN眞鍋和子バンダイナムコスタジオBLUE PROTOCOLシーマンUnity齊藤陽介お知らせサルでもわかる人工知能ワークショップGenvid Technologies知識表現IGDAどうぶつしょうぎCLIPジェイ・コウガミ音楽ストリーミングマシンラーニングクラウドカメラ完全情報ゲーム坂本洋典釜屋憲彦藤澤仁生物学長谷洋平宮路洋一SIGGRAPH ASIAソニーフェイクニュースドローンシムピープルGPUALife人工生命オルタナティヴ・マシンサウンドスケープASBSぱいどんTEZUKA2020AI美空ひばり手塚治虫汎用人工知能Electronic ArtsマーケティングApex LegendsNinjaゲームTENTUPLAYMARVEL Future Fightタイムラプスバスキアブロックチェーン通しプレイ階層型強化学習WANN竹内将馬淵浩希岡島学映像セリア・ホデントUX認知科学ゲームデザインLUMINOUS ENGINELuminous Productionsパターン・ランゲージちょまどビッグデータMicrosoftMicrosoft Azureアストロノーカ模倣学習ナラティブFPSマルコフ決定過程スタンフォード大学パラメータ設計テニスバランス調整レコメンドシステム対話型エージェント協調フィルタリング人狼知能Amazon軍事AlphaDogfight TrialsエージェントシミュレーションゲームプレイAIStarCraft IIFuture of Life InstituteIntelロボティクスLAIKARotomationドラゴンクエストライバルズ不確定ゲームDota 2モンテカルロ木探索ソーシャルゲームEmbeddingGTC2020NVIDIA MAXINE淡路滋ビデオ会議グリムノーツゴティエ・ボエダGautier Boeda階層的クラスタリングaiboJuliusSIETPRGバーチャル・ヒューマン・エージェントtoio SDK for Unityクーガー田中章愛石井敦銭起揚茂谷保伯MinecraftGDMCマインクラフト成沢理恵MITメディアラボ著作権マジック・リープAIアートMagic Leap OneMagendaノンファンジブルトークンDDSPサッカー里井大輝KaggleバスケットボールAssassin’s Creed OriginsSea of ThievesGEMS COMPANYmonoAI technologyアバター初音ミクOculus転移学習テストBaldur's Gate 3Candy Crush SagaSIGGRAPH ASIA 2020VAEデバッギングBigGANアニメーションMaterialGANリップシンキングRNNUbisoftReBeLUbisoft La Forge自動運転車VolvoRival Prakウォッチドッグス レギオンユービーアイソフトNPC北尾まどかHALO将棋メタルギアソリッドVFSMDALL-Eナップサック問題汎用言語モデルSpotifyMITReplica StudioStyleGAN2amuseChitrakar巡回セールスマン問題ジョルダン曲線5GMuZeroクラウドゲーミングRival Peak和田洋一リアリティ番組Stadiaジョンソン裕子MILEs対話エンジンインタラクティブ・ストリーミング斎藤由多加インタラクティブ・メディアリトル・コンピュータ・ピープルシーマン人工知能研究所コンピューティショナル・フォトグラフィーLudoゴブレット・ゴブラーズTransformerSIGGRAPH 2019ArtEmis絵画ARGPT-2GROVERFAIRAIりんなチート検出オンラインカジノアップルRealFlowiPhoneシミュレーションDeep FluidsMeInGameAIGraphブレイン・コンピュータ・インタフェースBCILearning from Video予期知能ウェイポイントユクスキュルパス検索カント哲学ドラゴンクエストエージェントアーキテクチャPAIROCTOPATH TRAVELER画像認識西木康智OCTOPATH TRAVELER 大陸の覇者アルスエレクトロニカ2019StyleCLIPDeNAStyleRig逆転オセロニアNFT奥村エルネスト純齋藤精一高橋智隆ロボユニ泉幸典ロボコレ2019ぎゅわんぶらあ自己中心派意思決定モデルウロチョロス理化学研究所教育LEFT ALIVE長谷川誠Baby Xロバート・ダウニー・Jr.YouTubeSFThe Age of A.I.レコメンデーションテンセントMOBA人事研修mynet.ai人工音声プレイ動画NBA群知能ウィル・ライトシムシティレベルデザインSporeデノイズ画像処理CPUGMAITRPGウィザードリィAI Dungeon西川善司サムライスピリッツゼビウスストリートファイター栗原聡山野辺一記大里飛鳥マンガ13フェイズ構造手塚眞不気味の谷Oculus Quest生体情報写真照明山崎陽斗立木創太松井俊浩スパーシャルAIGameGANパックマンソサエティ5.0SIGGRAPH 2020DIB-R3D広告

サルでもわかる人工知能 Vol.2:遺伝的アルゴリズムその2「ナップサック問題」

2019.7.02ゲーム

サルでもわかる人工知能 Vol.2:遺伝的アルゴリズムその2「ナップサック問題」

WebアプリでAIを学べる「サルでもわかる人工知能」。前回の「シンプルGA」では、遺伝的アルゴリズム(以後GA)の基本的な振る舞いを体感してもらえるように、全遺伝子が1になれば良い簡単なシミュレーションをしました。今回は、「ニャンコ盗賊A」というページを追加しました。よりゲームぽい世界観で、GAの学習過程を体感してもらいたいと思います。

ニャンコ盗賊は、博物館に忍び込んでお宝を盗みだそうとします。博物館に展示してあるアイテムは、価値も重さもまちまちです。一方、ニャンコ盗賊のナップサックには重量制限があります。重量制限以上詰め込もうとするとナップサックが壊れて、ミッションが失敗します。また、展示物の中には、なぜだか爆弾があります。これは、持ち出そうとすると爆発します。その瞬間にミッション失敗です。

このため、ニャンコ盗賊は、手当たり次第にアイテムを持ち帰るのではなく、重さの割に価値が高いアイテムを吟味して、ナップサックの総重量限界まで詰め込めるような最適なアイテムの組み合わせを考えなくてはなりません。このように、ある制限の中で複数アイテムがある中、もっとも良いアイテムの組み合わせを見つける問題を「ナップサック問題」と言います。

シミュレーションを走らせると、世代が進むにつれ、だんだんと効率よくお宝を運び出せるようになるようになります。その学習の進み方を体感して下さい。また、今回もGAの各種パラメータを自由に設定できるようになっています。いろいろいじってもらって、学習の速度がどう違ってくるかもぜひ、体験してみてください。

「ナップサック問題」は、最適なパーティー編成やカードデッキの構成の学習など、ゲームにおいて利用範囲が広い問題です。「ナップサック問題」をどう解釈して、どうイメージをふくらませるか、そのあたりも想像していただけたらと思います。

➤画像をクリックするとアプリページに飛びます。「はじめる」の次のページから「ニャンコ盗賊A」を選択してください。

アプリデザイン・イラスト・テキスト:森川幸人、プログラム:服部欣也

RELATED ARTICLE関連記事

発想より技術が先行する時代におけるゲームAIの役割:『ゲームAI技術入門』刊行記念特別対談レポート(後編)

2019.11.20ゲーム

発想より技術が先行する時代におけるゲームAIの役割:『ゲームAI技術入門』刊行記...

eSports世界チャンピオンを下したOpenAI FiveはゲームAIに何をもたらすか?

2019.4.17ゲーム

eSports世界チャンピオンを下したOpenAI FiveはゲームAIに何をも...

TRPGのゲームマスターを演じるゲームAIの探求

2020.3.30ゲーム

TRPGのゲームマスターを演じるゲームAIの探求

RANKING注目の記事はこちら