モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。
- TAG LIST
- CGCGへの扉機械学習安藤幸央ディープラーニング月刊エンタメAIニュースGAN河合律子OpenAINVIDIA音楽吉本幸記ニューラルネットワーク三宅陽一郎強化学習GoogleQAグーグルDeepMindGPT-3Facebook自然言語処理人工知能学会大内孝子森川幸人敵対的生成ネットワークシナリオキャラクターAIスクウェア・エニックスモリカトロンAIラボインタビューマイクロソフトルールベースStable DiffusionAIと倫理アート映画デバッグNFTDALL-E2StyleGAN倫理ゲームプレイAI自動生成SIGGRAPHモリカトロンメタAIテキスト画像生成ロボット深層学習ファッションCEDEC2019プロシージャルVFXデジタルツイン遺伝的アルゴリズムテストプレイNPCDALL-ECLIP画像生成大規模言語モデルChatGPTビヘイビア・ツリーディープフェイクCEDEC2021CEDEC2020ゲームAIメタバース不完全情報ゲームVRナビゲーションAI画像生成AIボードゲーム畳み込みニューラルネットワークGDC 2021JSAI2022生成系AIAdobeGDC 2019マルチエージェントCEDEC2022著作権AIアート懐ゲーから辿るゲームAI技術史toioジェネレーティブAICNNMicrosoftNVIDIA OmniverseUnity小説アニメーション鴫原盛之HTN階層型タスクネットワークマンガ汎用人工知能JSAI2020GTC2023TensorFlowインタビューバーチャルヒューマンBERTMidjourneyイベントレポート対話型エージェントAmazonロボティクスMetaMinecraft水野勇太アバターOmniverse3DCGUbisoftGenvid TechnologiesガイスターStyleGAN2GTC2022教育ソニーJSAI2021スポーツ研究シムピープルMCS-AI動的連携モデルマーケティングGDC SummerLLMブロックチェーン作曲アストロノーカキャリアeスポーツスタンフォード大学サイバーエージェント音声認識eSportsDQNBLUE PROTOCOLシーマンStability AIメタAlphaZeroTransformerGPT-2rinnaAIりんなデジタルヒューマンカメラ環世界中島秀之PaLM哲学ベリサーブPlayable!理化学研究所SIGGRAPH ASIANetflix東京大学DARPAドローンシムシティImagenZorkバイアスモーションキャプチャーTEZUKA2020AI美空ひばり手塚治虫テキスト生成バンダイナムコ研究所スパーシャルAIElectronic Arts3DメタデータLEFT 4 DEAD通しプレイOpenAI Five本間翔太CMAudio2Faceピクサープラチナエッグイーサリアムボエダ・ゴティエビッグデータ中嶋謙互Amadeus Codeデータ分析Microsoft AzureMILE模倣学習ナラティブNVIDIA RivaアーケードゲームOmniverse ReplicatorWCCFレコメンドシステムNVIDIA DRIVE SimWORLD CLUB Champion FootballNVIDIA Isaac Simセガ柏田知大軍事田邊雅彦トレーディングカードトレカメディアアートGPTPyTorch眞鍋和子バンダイナムコスタジオaibo合成音声齊藤陽介マインクラフトお知らせMagic Leap Oneチャットボットサルでもわかる人工知能VAEDreamFusionリップシンキングUbisoft La Forge自動運転車ワークショップ知識表現ウォッチドッグス レギオンIGDA秋期GTC2022市場分析どうぶつしょうぎEpic Gamesジェイ・コウガミ音楽ストリーミングMITAIロボ「迷キュー」に挑戦AWS野々下裕子徳井直生マシンラーニング5GMuZeroRival Peakpixivクラウド対話エンジン斎藤由多加リトル・コンピュータ・ピープルCodexコンピューティショナル・フォトグラフィーゴブレット・ゴブラーズ絵画ARMicrosoft Designerイラストシミュレーション完全情報ゲーム坂本洋典釜屋憲彦ウェイポイントパス検索対談藤澤仁生物学GTC 2022画像認識GPT-3.5SiemensStyleCLIPDeNA長谷洋平masumi toyota宮路洋一OpenSeaGDC 2022Gen-1TextWorldEarth-2BingMagenta音楽生成AISFELYZA Pencil松尾豊GTC2021CycleGANテンセントデータマイニングNetHackはこだて未来大学Bardキャラクターモーションフェイクニュース現代アートエージェントRPGSIGGRAPH 2022レベルデザインAIボイスアクターNVIDIA CanvasGPUALife人工生命オルタナティヴ・マシンサウンドスケープLaMDATRPGAI DungeonプロンプトASBS栗原聡ぱいどんアドベンチャーゲーム不気味の谷ナビゲーションメッシュ松井俊浩ELYZAフルコトELYZA DIGEST建築音声合成NeRF西成活裕Apex LegendsELIZA群衆マネジメントライブポートレイトNinjaコンピュータRPGライブビジネスWonder Studioアップルタウン物語新型コロナ土木KELDIC周済涛BIMメロディ言語清田陽司インフラゲームTENTUPLAYサイバネティックスMARVEL Future FightAstro人工知能史Amazon BedrockタイムラプスEgo4DAI哲学マップイーロン・マスクバスキア星新一X.AI日経イノベーション・ラボStyleGAN-XLX Corp.敵対的強化学習StyleGAN3Twitter階層型強化学習GOSU Data LabGANimatorXホールディングスWANNGOSU Voice AssistantVoLux-GANMagi竹内将SenpAI.GGProjected GANStable Diffusion XLMobalyticsSelf-Distilled StyleGANSDXL馬淵浩希CygamesニューラルレンダリングRTFKT岡島学AWS SagemakerPLATONIKE映像セリア・ホデント形態素解析frame.ioClone XUXAWS LambdaFoodly村上隆誤字検出森山和道認知科学中川友紀子Digital MarkゲームデザインSentencePieceアールティSnapchatLUMINOUS ENGINEクリエイターコミュニティLuminous ProductionsBlenderBot 3バーチャルペットパターン・ランゲージ竹村也哉Meta AINVIDIA NeMo Serviceちょまどマーク・ザッカーバーグヴァネッサ・ローザGOAPWACULVanessa A RosaAdobe MAX 2021陶芸自動翻訳Play.ht音声AIAIライティングLiDAROmniverse AvatarAIのべりすとPolycamFPSQuillBotdeforumマルコフ決定過程NVIDIA MegatronCopysmith動画生成AINVIDIA MerlinJasperハーベストNVIDIA MetropolisForGamesパラメータ設計テニスゲームマーケットバランス調整岡野翔太協調フィルタリング郡山喜彦人狼知能テキサス大学ジェフリー・ヒントンGoogle I/O 2023AlphaDogfight TrialsAI Messenger VoicebotGoogle I/OエージェントシミュレーションOpenAI Codex武蔵野美術大学StarCraft IIHyperStyleMax CooperBingAIFuture of Life InstituteRendering with StyleIntelDisney類家利直FireflyLAIKADisneyリサーチヴィトゲンシュタインPhotoshopRotomationGauGAN論理哲学論考LightroomGauGAN2京都芸術大学Canvaドラゴンクエストライバルズ画像言語表現モデルChatGPT4不確定ゲームSIGGRAPH ASIA 2021PromptBaseBOOTHDota 2モンテカルロ木探索ディズニーリサーチpixivFANBOXMitsuba2バンダイナムコネクサス虎の穴ソーシャルゲームEmbeddingワイツマン科学研究所ユーザーレビューFantiaGTC2020CG衣装mimicとらのあなNVIDIA MAXINEVRファッションBaidu集英社淡路滋ビデオ会議ArtflowERNIE-ViLG少年ジャンプ+グリムノーツEponym古文書ComicCopilotゴティエ・ボエダ音声クローニング凸版印刷コミコパGautier Boeda階層的クラスタリングGopherAI-OCRゲームマスター画像判定Inowrld AIJuliusSIE鑑定ラベル付けMODTPRGOxia Palus大澤博隆Ghostwriterバーチャル・ヒューマン・エージェントtoio SDK for UnityArt RecognitionSFプロトタイピングSkyrimクーガー田中章愛実況パワフルサッカースカイリム石井敦銭起揚NHC 2021桃太郎電鉄RPGツクールMZ茂谷保伯池田利夫桃鉄ChatGPT_APIMZGDMC新刊案内パワサカダンジョンズ&ドラゴンズマーベル・シネマティック・ユニバースコナミデジタルエンタテインメントOracle RPG成沢理恵MITメディアラボMCU岩倉宏介深津貴之アベンジャーズPPOxVASynthマジック・リープDigital DomainMachine Learning Project CanvasLaser-NVMagendaMasquerade2.0国立情報学研究所TencentノンファンジブルトークンDDSPフェイシャルキャプチャー石川冬樹MERFサッカーモリカトロン開発者インタビュースパコンAlibaba里井大輝Kaggle宮本茂則スーパーコンピュータVQRFバスケットボール山田暉松岡 聡nvdiffrecAssassin’s Creed OriginsAI会話ジェネレーターTSUBAME 1.0NeRFMeshingSea of ThievesTSUBAME 2.0LERFGEMS COMPANYmonoAI technologyLSTMABCIマスタリングモリカトロンAIソリューション富岳TikTok初音ミクOculusコード生成AISociety 5.0リアム・ギャラガー転移学習テストAlphaCode夏の電脳甲子園グライムスBaldur's Gate 3Codeforces座談会BoomyCandy Crush Saga自己増強型AItext-to-imageジョン・レジェンドSIGGRAPH ASIA 2020COLMAPtext-to-3Dザ・ウィークエンドADOPNVIDIA GET3DドレイクデバッギングBigGANGANverse3DMaterialGANRNNグランツーリスモSPORTAI絵師ReBeLグランツーリスモ・ソフィーUGCGTソフィーPGCVolvoFIAグランツーリスモチャンピオンシップNovelAIRival PrakDGX A100NovelAI DiffusionVTuberユービーアイソフトWebcam VTuberモーションデータ星新一賞北尾まどかHALOポーズ推定将棋メタルギアソリッドVフォートナイトメッシュ生成FSMメルセデス・ベンツRobloxMagic Leapナップサック問題Live NationEpyllion汎用言語モデルWeb3.0マシュー・ボールAIOpsムーアの法則SpotifyスマートコントラクトReplica StudioamuseChitrakarQosmoAdobe MAX 2022巡回セールスマン問題Adobe MAXジョルダン曲線メディアAdobe Research政治Galacticaクラウドゲーミングがんばれ森川君2号和田洋一リアリティ番組映像解析Stadiaジョンソン裕子セキュリティMILEsNightCafe東芝デジタルソリューションズインタラクティブ・ストリーミングLuis RuizSATLYS 映像解析AIインタラクティブ・メディアポケモン3DスキャンPFN 3D Scanシーマン人工知能研究所東京工業大学Ludo博報堂Preferred NetworksラップPFN 4D ScanSIGGRAPH 2019ArtEmisZ世代DreamUpAIラッパーシステムDeviantArtWaifu DiffusionGROVERプラスリンクス ~キミと繋がる想い~元素法典FAIRSTCNovel AIチート検出Style Transfer ConversationOpen AIオンラインカジノRCPアップルRealFlowRinna Character PlatformiPhoneCALADeep FluidsSoul Machines柿沼太一MeInGameAmeliaELSIAIGraphブレイン・コンピュータ・インタフェースバーチャルキャラクターBCIGateboxアフォーダンスLearning from VideoANIMAKPaLM-SayCan予期知能逢妻ヒカリセコムGitHub Copilotユクスキュルバーチャル警備システムCode as Policiesカント損保ジャパンCaP上原利之ドラゴンクエストエージェントアーキテクチャアッパーグラウンドコリジョンチェックPAIROCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者山口情報芸術センター[YCAM]アルスエレクトロニカ2019品質保証YCAMStyleRigAutodeskアンラーニング・ランゲージ逆転オセロニアBentley Systemsカイル・マクドナルドワールドシミュレーターローレン・リー・マッカーシー奥村エルネスト純いただきストリートH100鎖国[Walled Garden]プロジェクト齋藤精一大森田不可止COBOLSIGGRAPH ASIA 2022高橋智隆DGX H100VToonifyロボユニザナックDGX SuperPODControlVAE泉幸典仁井谷正充クラウドコンピューティング変分オートエンコーダーロボコレ2019Instant NeRFフォトグラメトリartonomous回帰型ニューラルネットワークbitGANsDeepJoinぎゅわんぶらあ自己中心派Azure Machine LearningAzure OpenAI Service意思決定モデル脱出ゲームDeepLHybrid Reward Architectureコミュニティ管理DeepL WriteウロチョロスSuper PhoenixSNSProject Malmoオンラインゲーム気候変動Project PaidiaシンギュラリティProject Lookoutマックス・プランク気象研究所レイ・カーツワイルWatch Forビョルン・スティーブンスヴァーナー・ヴィンジ気象モデルRunway ResearchLEFT ALIVE気象シミュレーションMake-A-Video長谷川誠ジミ・ヘンドリックス環境問題PhenakiBaby Xカート・コバーンエコロジーDreamixロバート・ダウニー・Jr.エイミー・ワインハウスSDGsText-to-ImageモデルYouTubeダフト・パンクメモリスタ音声生成AIGlenn MarshallScenarioThe Age of A.I.Story2Hallucination音声変換LatitudeレコメンデーションJukeboxAIピカソVeap JapanAI素材.comEAPneoAISIFT福井千春DreamIconDCGAN医療mignMOBADANNCEメンタルケアstudiffuse人事ハーバード大学Edgar HandyAndreessen Horowitz研修デューク大学AIQVE ONEQA Tech Nightmynet.aiローグライクゲーム松木晋祐東京理科大学下田純也人工音声NeurIPS 2021産業技術総合研究所桑野範久リザバーコンピューティングプレイ動画ヒップホップ対話型AIモデル詩ソニーマーケティングControlNetサイレント映画もじぱnoteNBA環境音暗号通貨note AIアシスタントFUZZLEKetchupAlterationAI News粒子群最適化法Art Selfie進化差分法オープンワールドArt Transfer群知能下川大樹AIFAPet Portraitsウィル・ライト高津芳希P2EBlob Opera大石真史クリムトBEiTStyleGAN-NADA世界モデルDETRゲームエンジンDreamerV3SporeUnreal Engineクリティックネットワークデノイズ南カリフォルニア大学Unity for Industryアクターネットワーク画像処理DMLabSentropyGLIDEControl SuiteCPUDiscordAvatarCLIPAtari 100kSynthetic DataAtari 200MCALMYann LeCunプログラミングサム・アルトマン鈴木雅大ソースコード生成コンセプトアートGMAIシチズンデベロッパーSonanticColie WertzGitHubCohereリドリー・スコットウィザードリィMCN-AI連携モデルマジック:ザ・ギャザリング絵コンテUrzas.aiストーリーボード介護大阪大学西川善司並木幸介KikiBlenderサムライスピリッツ森寅嘉Zoetic AIゼビウスSIGGRAPH 2021ペットGPT-4ストリートファイター半導体Digital Dream LabsPaLM APITopaz Video Enhance AICozmoMakerSuiteDLSSタカラトミーSkeb山野辺一記NetEaseLOVOTDreambooth-Stable-Diffusion大里飛鳥DynamixyzMOFLINゲーム背景RomiGoogle EarthU-NetミクシィGEPPETTO AI13フェイズ構造ユニロボットStable Diffusion web UIADVユニボPoint-EXLandGatoアパレルAGIAI model手塚眞DEATH STRANDINGマルチモーダルAI ModelsEric Johnson汎用強化学習AIZMO.AIデザインMOBBY’SOculus Questコジマプロダクションロンドン芸術大学モビーディック生体情報デシマエンジンGoogle BrainダイビングインディーゲームSound Controlアウトドア写真高橋ミレイSYNTH SUPERAIスキャニング照明Maxim PeterKarl Sims自動採寸Joshua RomoffArtnome3DLOOKハイパースケープICONATESizer山崎陽斗深層強化学習ワコール立木創太松原仁スニーカー浜中雅俊UNSTREETミライ小町武田英明Newelseテスラ福井健策CheckGoodsGameGAN二次流通パックマンTesla BotNEDO中古市場Tesla AI DayWikipediaDupe Killerソサエティ5.0Sphere偽ブランドSIGGRAPH 2020バズグラフXaver 1000配信ニュースタンテキ養蜂東芝Beewiseソニー・ピクチャーズ アニメーションDIB-R倉田宜典フィンテック投資Fosters+Partners韻律射影MILIZEZaha Hadid Architects広告韻律転移三菱UFJ信託銀行
大規模言語モデルとの統合で進化するGoogleの汎用ロボット開発の現状
かつてはロボットと言えば、工場で稼働する産業用ロボットや玩具ロボットのような用途が限定されたものでした。2010年代に第三次AI革命が起こったことで、ロボットに画像認識や自然言語処理のような機能が実装されるようになり、その用途が広がりました。こうしたなか大規模言語モデル開発に熱心なGoogleは、ロボット開発を新たな次元に引き上げようとしています。本稿では、大規模言語モデルを実装することで汎用ロボットの実現を目指すGoogleの取り組みを紹介します。
アフォーダンスを考慮してタスクを決定
Googleは2022年8月15日、大規模言語モデルを実装したヘルパーロボット「PaLM-SayCan」に関する記事を公開しました。このロボットの革新性は、大規模言語モデルを実装することで自然言語による指示に柔軟な対応ができるようになったところです。
周知のように現在の大規模言語モデルは、曖昧さをふくんでいる自然言語をかなり理解できるようになりました。例えば「(アメリカの)ダラスで一番おいしいレストランとは」という質問に対して、ダラスにあるレストランの価格や料理等を考慮して答えられます。こうした大規模言語モデルをロボットの制御に活用すれば、自然言語による指示を理解できるロボットが実現するのではないか、とGoogle研究チームは考えました。そうして誕生したのが、PaLM-SayCanです。この名称にふくまれているPaLMは同社が開発した大規模言語モデルの名前であり、パラメータ数は5,400億と世界最高峰です。
PaLM-SayCanは、以下のような手順を実行して自然言語による指示を実行します。
- 手順1.タスクの理解:自然言語による指示にもとづいて、最初に実行可能なタスクをリストアップする。例えば「おやつを持ってきて」という指示に対して、「バナナを探す」「キャンディーを持って行く」といった指示の遂行につながるタスクを挙げていく。列挙したタスクには、指示遂行につながる度合いを示す言語スコアが付与される。
- 手順2.タスクの絞り込み:手順1で列挙したタスクは、そのすべてが実行可能なわけではない。バナナが近くにないのに、バナナは探せない。それゆえ、タスクの実行可能性を評価する必要がある。この評価に使われる指標が、アフォーダンススコアである。アフォーダンスとは生体心理学の用語で、環境が行動主体に対して与える「意味」のこと。
- 手順3.実行タスクの決定:手順1でリストアップされたタスクに関して、言語スコアとアフォーダンススコアを合わせて評価して、もっとも指示遂行につながるタスクを決定する。
- 手順4.指示完遂まで反復:簡単な指示の場合、単一のタスクで完遂となる。複雑な指示の場合は、完遂までに必要なタスクを複数設定したうえで手順2と手順3を指示完遂まで繰り返す。
以上のように指示に対応するPaLM-SayCanは、既存ヘルパーロボットと比較して指示を完遂するまでのタスクを設定する能力が14%、簡単な指示を完遂するタスクの実行能力が13%、8つの以上のタスクの実行が求められる複雑な指示に対するタスク計画能力にいたっては26%向上しました。
コード自体を生成するロボット
PaLM-SayCanの成果をふまえてGoogle研究チームは2022年11月2日、新たな設計思想にもとづいた汎用的ロボットを発表しました。このロボットの特徴は、大規模言語モデルが持っているコード生成機能を動作の制御に利用することにあります。
GPT-3の登場以降、コメントを渡すとそのコメントの内容に則したコードを生成するAIが多数リリースされました。こうしたコード生成AIのなかで代表的なのがGitHub Copilotです。同AIは、現在ソフトウェア開発のシーンで利用されています。こうしたなかGoogle研究チームは、自然言語の指示を受けてタスクを実行するロボットの動作制御に対して、コード生成AIを活用したのです。「方針としてのコード(Code as Policies:略してCaP)」と命名されたこの活用法においては、コードを生成するために渡すコメントに相当するのがタスクの指示となります。例えば「四角の枠の真ん中にブロックを並べよ」という指示に対して、CaPを実装したロボットはこの指示を実行するコードを生成した後にそのコードに従って動作します。
「速く」「もっと左に」といった曖昧な自然言語表現をふくむ指示については、CaP実装ロボットは指示が与えられているコンテクストに応じて常識的に解釈して、具体的な動作速度や移動座標を割り当てます。
以上のようなCap実装ロボットについて、従来のタスクを強化学習するロボットと性能比較を行ったところ、前者のほうが多様なタスクに対応できるうえにタスクを実行するパフォーマンスも向上することがわかりました。この比較結果はロボット制御においてCaPを実装すれば、タスクに関する強化学習を実行する必要がなくなることを示唆しています。
ロボットの汎用性とモデルサイズの関係
Google研究チームは、CaP実装ロボットの汎用性を測定するテストも行いました。このテストは、タスクの遂行能力をさまざまな観点からスコア化するというものでした。そうした観点には既知の部品を組み替えて新しい配列を形成する能力である「系統性(systematicity)」、複雑なタスクを実行するコードを生成する能力を問う「生産性(productivity)」といったものがありました。
以上のような汎用性測定テストをCaP実行モデルのサイズを変えながら実施したところ、一般にモデルサイズが大きいほど汎用性が高く、とくに生産性においてはモデルサイズに起因する性能差が大きいことがわかりました。以下のグラフで「cushman」と表記されたスコアは小さいサイズのモデルのスコア、「davinci」と表記されたものは大きいモデルのそれを表しています。グラフのもっとも右側の「Productivity(生産性)」においてCushmanとDavinciの差が大きいことが見て取れます。
CaPは、強化学習によって進化してきたロボット開発に新しい研究領域を追加するイノベーティブな技術と言えます。もっとも、現時点で同技術によって実行できるタスクは、単純なものに限られます。「積み木の家を作る」のような人間の幼児でも出来るようなタスクをまだ実行できないのです。CaP実装ロボットが実行できるタスクを増やすためには、ロボットが実行できる基本動作を増やすことが考えられます。
以上に紹介したGoogleのロボット開発は、今後さらに進化することが予想されます。というのも、同社は大規模言語モデル開発を得意としているので、この分野での研究成果が早期にロボット開発に反映されると見込まれるからです。それゆえ、汎用ロボット開発をけん引する企業として今後ともGoogleから目を離せないでしょう。
Writer:吉本幸記、Image by Google