モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CG機械学習ディープラーニングCGへの扉安藤幸央GAN月刊エンタメAIニュース河合律子ニューラルネットワークOpenAINVIDIA強化学習三宅陽一郎音楽FacebookQAスクウェア・エニックス森川幸人モリカトロンAIラボインタビュー敵対的生成ネットワークDeepMindルールベースキャラクターAIシナリオGPT-3自然言語処理NFTGoogleグーグル自動生成映画デバッグCEDEC2019吉本幸記StyleGANプロシージャル人工知能学会遺伝的アルゴリズムメタAI深層学習マイクロソフトアートビヘイビア・ツリーCEDEC2021大内孝子CEDEC2020ゲームAISIGGRAPH不完全情報ゲームゲームプレイAIVRナビゲーションAI畳み込みニューラルネットワークDALL-ECLIPロボットAIと倫理ディープフェイクGDC 2021VFXメタバースGDC 2019マルチエージェントボードゲームNPCCNNデジタルツインモリカトロンUnityAIアートファッションHTN階層型タスクネットワークDALL-E2JSAI2020TensorFlowMicrosoftイベントレポートテストプレイ水野勇太小説アニメーションガイスターStyleGAN2懐ゲーから辿るゲームAI技術史toioソニーJSAI2021スポーツ研究シムピープル汎用人工知能GDC Summerバーチャルヒューマンブロックチェーン倫理BERTAdobeアストロノーカNVIDIA Omniverseeスポーツ対話型エージェントAmazoneSportsBLUE PROTOCOLシーマンUbisoft画像生成テキスト画像生成AlphaZeroTransformerGPT-2カメラ環世界中島秀之鴫原盛之DARPAドローンシムシティAI美空ひばり手塚治虫Electronic ArtsメタデータLEFT 4 DEADインタビュー通しプレイOpenAI Five本間翔太CMピクサープラチナエッグイーサリアム作曲ビッグデータ中嶋謙互Amadeus CodeMicrosoft AzureキャリアナラティブOmniverse ReplicatorレコメンドシステムNVIDIA DRIVE SimNVIDIA Isaac Simサイバーエージェント音声認識ロボティクスPyTorchDQN眞鍋和子バンダイナムコスタジオaibo合成音声Minecraft齊藤陽介マインクラフトお知らせチャットボットアバターサルでもわかる人工知能VAEOmniverseUbisoft La Forge自動運転車ワークショップGenvid Technologiesメタ知識表現ウォッチドッグス レギオンIGDAどうぶつしょうぎEpic Gamesジェイ・コウガミ音楽ストリーミング徳井直生マシンラーニングクラウド対話エンジン斎藤由多加リトル・コンピュータ・ピープルコンピューティショナル・フォトグラフィーゴブレット・ゴブラーズ絵画AIりんなシミュレーション完全情報ゲーム坂本洋典釜屋憲彦ウェイポイントパス検索対談藤澤仁生物学GTC 2022画像認識GTC2022StyleCLIPDeNA長谷洋平masumi toyota宮路洋一OpenSeaGDC 2022教育TextWorldSIGGRAPH ASIAGTC2021CycleGANNetHackフェイクニュースエージェントAIボイスアクターNVIDIA CanvasImagenGPUALifeZork人工生命オルタナティヴ・マシンサウンドスケープMCS-AI動的連携モデルASBSマンガモーションキャプチャーぱいどんTEZUKA2020ナビゲーションメッシュ松井俊浩バンダイナムコ研究所スパーシャルAIELYZAELYZA DIGEST3D音声合成マーケティングApex LegendsELIZANinjaコンピュータRPGアップルタウン物語KELDICメロディ言語ゲームTENTUPLAYMARVEL Future FightAstroタイムラプスEgo4Dバスキア日経イノベーション・ラボ敵対的強化学習階層型強化学習GOSU Data LabWANNGOSU Voice Assistant竹内将SenpAI.GGMobalytics馬淵浩希Cygames岡島学AWS Sagemaker映像セリア・ホデント形態素解析UXAWS Lambda誤字検出認知科学ゲームデザインSentencePieceLUMINOUS ENGINELuminous Productionsパターン・ランゲージ竹村也哉ちょまどボエダ・ゴティエGOAPAdobe MAX 2021模倣学習Omniverse AvatarFPSNVIDIA Rivaマルコフ決定過程NVIDIA MegatronNVIDIA Merlinスタンフォード大学NVIDIA Metropolisパラメータ設計テニスバランス調整協調フィルタリング人狼知能テキサス大学軍事AlphaDogfight TrialsAI Messenger VoicebotエージェントシミュレーションOpenAI CodexStarCraft IIHyperStyleFuture of Life InstituteRendering with StyleIntelDisneyLAIKADisneyリサーチRotomationGauGANGauGAN2ドラゴンクエストライバルズ画像言語表現モデル不確定ゲームSIGGRAPH ASIA 2021Dota 2モンテカルロ木探索ディズニーリサーチMitsuba2ソーシャルゲームEmbeddingワイツマン科学研究所GTC2020CG衣装NVIDIA MAXINEVRファッション淡路滋ビデオ会議ArtflowグリムノーツEponymゴティエ・ボエダ音声クローニングGautier Boeda階層的クラスタリングGopherJuliusSIE鑑定TPRGOxia Palusバーチャル・ヒューマン・エージェントtoio SDK for UnityArt Recognitionクーガー田中章愛Meta石井敦銭起揚NHC 2021茂谷保伯池田利夫GDMC新刊案内マーベル・シネマティック・ユニバース成沢理恵MITメディアラボMCU著作権アベンジャーズマジック・リープDigital DomainMagic Leap OneMagendaMasquerade2.0ノンファンジブルトークンDDSPフェイシャルキャプチャーサッカーモリカトロン開発者インタビュー里井大輝Kaggle宮本茂則バスケットボール山田暉Assassin’s Creed OriginsAI会話ジェネレーターSea of ThievesGEMS COMPANYmonoAI technologyLSTMモリカトロンAIソリューション初音ミクOculusコード生成AI転移学習テストAlphaCodeBaldur's Gate 3CodeforcesCandy Crush Saga自己増強型AISIGGRAPH ASIA 2020COLMAPADOPデバッギングBigGANGANverse3DMaterialGANリップシンキングRNNグランツーリスモSPORTReBeLグランツーリスモ・ソフィーGTソフィーVolvoFIAグランツーリスモチャンピオンシップRival PrakDGX A100VTuberユービーアイソフトWebcam VTuber星新一賞北尾まどかHALO市場分析将棋メタルギアソリッドVフォートナイトFSMRobloxナップサック問題Live Nation汎用言語モデルWeb3.0AIOpsSpotifyMITスマートコントラクトReplica StudioAWSamuseChitrakarQosmo巡回セールスマン問題ジョルダン曲線メディア5GMuZero政治クラウドゲーミングRival Peakがんばれ森川君2号和田洋一リアリティ番組Stadiaジョンソン裕子MILEsNightCafeインタラクティブ・ストリーミングLuis Ruizインタラクティブ・メディアポケモンCodexシーマン人工知能研究所東京工業大学Ludo博報堂ラップSIGGRAPH 2019ArtEmisZ世代AIラッパーシステムARrinnaGROVERプラスリンクス ~キミと繋がる想い~FAIRSTCチート検出Style Transfer ConversationオンラインカジノRCPアップルRealFlowRinna Character PlatformiPhoneデジタルヒューマンDeep FluidsSoul MachinesMeInGameAmeliaAIGraphブレイン・コンピュータ・インタフェースバーチャルキャラクターBCIGateboxLearning from VideoANIMAK予期知能逢妻ヒカリセコムユクスキュルバーチャル警備システムカント損保ジャパン哲学上原利之ドラゴンクエストエージェントアーキテクチャアッパーグラウンドPAIROCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者Siemensアルスエレクトロニカ2019品質保証StyleRigAutodesk逆転オセロニアBentley Systemsワールドシミュレーター奥村エルネスト純いただきストリートH100齋藤精一大森田不可止COBOL高橋智隆DGX H100ロボユニザナックDGX SuperPOD泉幸典仁井谷正充クラウドコンピューティングロボコレ2019Instant NeRFartonomousbitGANsぎゅわんぶらあ自己中心派Azure Machine Learning意思決定モデル脱出ゲームHybrid Reward Architectureコミュニティ管理ウロチョロスSuper PhoenixSNS理化学研究所Project Malmoオンラインゲーム気候変動Project PaidiaEarth-2Project Lookoutマックス・プランク気象研究所Watch Forビョルン・スティーブンスBing気象モデルLEFT ALIVE気象シミュレーション長谷川誠ジミ・ヘンドリックス環境問題Baby Xカート・コバーンエコロジーロバート・ダウニー・Jr.エイミー・ワインハウスSDGsMagentaYouTubeダフト・パンクメモリスタSFGlenn MarshallELYZA PencilThe Age of A.I.Story2Hallucination音声変換レコメンデーションJukebox松尾豊Veap JapanEAPテンセントSIFT福井千春DCGAN医療MOBADANNCEメンタルケア人事ハーバード大学Edgar Handy研修デューク大学Netflixデータマイニングmynet.aiローグライクゲーム東京大学東京理科大学人工音声NeurIPS 2021産業技術総合研究所はこだて未来大学リザバーコンピューティングプレイ動画ヒップホップキャラクターモーションソニーマーケティングサイレント映画もじぱNBA環境音暗号通貨現代アートFUZZLEAlteration粒子群最適化法RPG進化差分法オープンワールド群知能下川大樹AIFAウィル・ライト高津芳希P2E大石真史SIGGRAPH 2022BEiTStyleGAN-NADAレベルデザインDETRゲームエンジンSporeUnreal Engineデノイズ南カリフォルニア大学Unity for Industry画像処理SentropyGLIDECPUDiscordAvatarCLIPSynthetic DataCALMバイアスプログラミングサム・アルトマンソースコード生成LaMDAGMAIシチズンデベロッパーSonanticTRPGGitHubCohereウィザードリィMCN-AI連携モデルマジック:ザ・ギャザリングAI DungeonUrzas.ai介護西川善司並木幸介Kikiサムライスピリッツ森寅嘉Zoetic AIゼビウスSIGGRAPH 2021ペットストリートファイター半導体Digital Dream LabsTopaz Video Enhance AICozmo栗原聡DLSSタカラトミー山野辺一記NetEaseLOVOT大里飛鳥DynamixyzMOFLINRomiU-Netミクシィ13フェイズ構造アドベンチャーゲームユニロボットADVユニボXLandGatoAGIテキスト生成手塚眞DEATH STRANDINGマルチモーダル不気味の谷Eric Johnson汎用強化学習AIOculus Questコジマプロダクション生体情報デシマエンジンインディーゲーム写真高橋ミレイ照明Maxim PeterJoshua Romoffハイパースケープ山崎陽斗深層強化学習立木創太ミライ小町テスラGameGANパックマンTesla BotTesla AI Dayソサエティ5.0SIGGRAPH 2020バズグラフニュースタンテキ東芝DIB-R倉田宜典韻律射影広告韻律転移

AIと創造性のインタラクションは人間の何を変えるのか:徳井直生氏×森川幸人氏対談

2022.6.03音楽

AIと創造性のインタラクションは人間の何を変えるのか:徳井直生氏×森川幸人氏対談

今回の対談では、『創るためのAI 機械と創造性のはてしない物語』(2021年、ビー・エヌ・エヌ)の著者である徳井直生氏とモリカトロンAIラボ所長・森川幸人氏が、クリエイティブな領域におけるAIの可能性を探ります。AIの利活用が進む今、社会はAIに精度や正しさを求めていますが、それとは異なる価値を持つAIを探求する二人の目を通して、AIと人間の未来を考えたいと思います。進行は編集長の高橋ミレイとライターの大内孝子です。

「AI DJ」に見る、AIと人間の関係

AI DJ Project – A dialog between human and AI through music from Qosmo / コズモ on Vimeo.

森川幸人氏(以下、森川):徳井さんの本でも紹介されている「AI DJ Project」(*1) で、AIとBack to Back(2人以上のDJが交互に一曲ずつかけ合うプレイスタイル)でプレイするときは、やはり人間のDJが相手のときとは異なるものなんでしょうか?

*1:人間のDJとAIのDJが、Back to BackでDJを行う、人間とAIのユニークな対話を試みるプロジェクト。徳井直生氏を中心にQosmoのプロジェクトとして2015年にスタートした。

徳井直生氏(以下、徳井):両者の違いはいくつかあるのですが、特に大きな違いがふたつあります。ひとつは、相手が人間であれば何かしら我々の間に共通している常識というものがあるということです。特定のジャンルのDJであればそのジャンルの範囲内で曲をかけるなど。もちろん、DJによって好みや音楽のかけ方の違いというのはありますが。

一方で、AIの場合はあまりそういった常識というか固定概念みたいなものがありません。もちろん音楽のジャンルを教え込むこともできますが。僕はAIにジャンルを学習させていないので、あまりジャンルにこだわらず人間のDJならしないような選曲をするのが一番面白かったところです。

もうひとつは、人間のDJの場合、そのパーティーが行われる一晩の流れを考えるので、こちらも前のDJの選曲に対して「たぶんこの後こういう流れに持っていきたいからこれを選んだのだろう」と言外の意図を読み取りながら選曲を柔軟に変えることができるのですが、AIの場合はまだそれができません。やはり場当たり的な選曲になっていることが多かったりします。

森川:聞く側もそうでしょうね。プレイしているのが人間のDJなら「次はこう来るだろう」という予測のもとに、前もって心の準備ができる。でもAIのDJの場合は、ランダム性の高い選曲がされるので心の準備がちょっと間に合わない可能性がありそうですね。

徳井:そうですね。DJという行為において人間が担っている役割を改めて感じました。単に「音楽を選曲してかける」だけではなく、何かしらの人生の歴史を持った人間が、その人の好みや世界観などを込めて音楽をかけ、それを観客と一緒に共有する時間を楽しむ。それこそがDJという行為の意味であり、人間のDJがそこにいることの意義でもあるのだと感じました。

森川:それはAIに担わせるにはまだちょっと難しいことでしょうか?。

徳井:AI DJ Projectは、DJの機械的に模倣できる部分をAIにやらせたことで、人間ならではの価値や役割がより明確になったプロジェクトだと思います。

森川:一昨年、女流棋士と将棋AIがチームになってトップ棋士と対戦するというイベントがあったのですが、この対戦は見ていて非常に楽しかったんです。AIが打ち手の候補を色々と出して、女流棋士がその候補の中から打ち手を選択するというルールでしたが、AIがせっかくいい候補を出すのに、女流棋士の直観とか見栄みたいな人間らしさが選択を誤らせて、結果、負けたりする。自分は将棋ができないので突っ込みようはなかったのですが、解説の人が「あーーー」と言いながら女流棋士の選択をなげいてたのが微笑ましく感じました。このように緩い形の人間とAIとの共存もいいのではないのかなと思いますね。すべての分野に通用するわけではないだろうけど、AIとの共存の未来の一遍がかすかに見えたような気がします。精度ばかり求める共存は、やはり少し息苦しくなってしまいますが、こういう緩い付き合いだと見ているほうもすごく楽しい。

徳井:面白いですね。僕も将棋は素人ですが、藤井聡太さんのように最先端の戦法をAIを使って編み出すなど、AIを使ってフロンティアを拡張する活用の仕方もある一方で、今のお話はもうちょっとエンターテイメントに近い感じだと思います。人がある種、AIに対してのノイズみたいな役割になっているということですよね。おそらく、その女流棋士が一人で対局する場合とAIとチームになって対局する場合とでは打ち方も変わるだろうし、見ている側にとっても、本人にとってもすごく刺激的な体験なのだろうなというのは想像できます。

森川:今の第三次AIブームで、AIが実用性が社会的にも認められた一方で「役に立つ」ところばかりが注目されてしまうのが自分としては寂しかったのですが、徳井さんの本にはそうしたアイデアの提案が多くて、しかもたくさん売れてて、こういう提案が受け入れられる土壌があるのだとすごくうれしく思っていました。

徳井:ありがとうございます。僕も表現の世界で言うと、もう少し力の抜けたAIの使い方をしたほうがいいなとずっと思っています。僕が大学生だった2000年頃に森川さんの著書『マッチ箱の脳(AI)』に出合いましたが、人工知能の話だけではなく、人工生命や遺伝的アルゴリズムの話についてもけっこう書かれていましたよね。他の人工知能関連の本が理系の数式ばかりなのに、緩い絵でAIのコンセプトが説明されているのがすごく面白いなと思って拝読していました。僕も、もともとは人工生命や遺伝的アルゴリズムの研究室にいたので。当時はまだ技術的に今ほど進んでいなくて、面白いエラーが生まれる余地がけっこうあったと思います。最近は、本当に精度がよくなってきたので、なかなかそういうことが起こらないですよね。だからこそ、社会実装されてきたという面もあるわけですが。

将棋のような勝負の世界やビジネスの世界なら最適化することで見えてくることがたくさんあると思いますが、こと表現の世界や遊びの世界では精度の高さだけにフォーカスしてしまうと、選択肢がどんどん狭くなって結果的に文化が薄っぺらくなように思います。すから逆に、最適化だけでなくどうしたら多様化できるのかを考えていったほうがいいと思いますね。結果的にそれがビジネスの世界や、もしかしたら勝負の世界にも応用できるのかもしれません。そうすることで何かもっと面白く新しい視点が取り込めるようになる可能性があるのではないかとずっと思っていました。

森川:僕は、AIが自分やプレイヤーの予想を超えたことをしてくれたときの面白みを共有したいと思っているのですが、悩みとしてずっと抱いているのは、じゃあそれは乱数とは何が違うのかということです。つまり気の利いたフィルターや偏りを持たせた乱数と自分がやっていることはいったい何が違うのかという疑問を、常々抱いていました。最初にAI DJのことを伺ったのもそれが理由でしたが、徳井さんはそのあたりのことはどう考えていますか?

徳井:おっしゃるとおりで、自分でも悩むところです。僕はAIを使う面白さはストライクゾーンの真ん中を狙うのでも暴投するのでもなく、ボール1個分だけ外に出す程度の逸脱にあるとイメージしています。

DJの世界でも、もちろん乱数を使ってジャンルの情報などをすべて無視して選曲することはできます。AIの選曲の場合は先ほど言ったとおり確かにジャンルという側面は無視しているけど、他の尺度から見るとすごく理にかなった選曲をしているのですね。実際に人間が聞いてみると、ジャンルは違うけど確かにグルーヴがそっくりだと感じられるなど何かしら腑に落ちるところがあって、それはおそらく乱数ではできないことだと思います。

森川:乱数にある傾向をつけたり、フィルターをかけたりしてもやはり、それはAIとは違うと?

徳井:そう思いますね。もちろん、すごく工夫して乱数を作れば今言っていたことができるのかもしれませんが、それはもはやAIだろうなと思うので。ディープラーニングではないかもしれないですけど。逆に、最近は精度が色々とよくなってきているので、かなり工夫しないと予想外のものが生まれにくくなりはじめている気もします。たとえば文章生成にしても、昔は良く言えばポエティックな、悪く言えばデタラメな文章が生成されたと思いますが、最近のGPT3などを使うと、かなり自然な文章が生成されますよね。

森川:そうですね。うちは日本語なのでGPT2を使っていますが、テストプレイをしているともう本当につまらない感じがします。きちんと答えてくれるので。わざと意地悪な質問をして、破綻させて喜んでいるという(笑)

徳井:そのあたり、今後どうなっていくのか非常に気になるところですね。やはり、人間がそこにだんだん慣れてきて意地悪な使い方をするのがうまくなっていくのか。

大きなAI、小さなAI

森川:徳井さんが今一番興味を持っているAIのアルゴリズムやモデルは何ですか?

徳井:やはり音楽に一番興味があるので、音楽まわりのアルゴリズムを追いかけています。音楽の分野での変化として挙げると、ここ3、4年、MIDIベースのシンボリックな音楽生成や処理が一般的だったのが、だんだん音自体を扱えるようになってきていますね。2年前に、Jukeboxという音楽生成モデルが出ました。これは、アーティスト名、歌詞、ジャンルを入れたら曲を生成してくれるというものです。ただ、GPUを何百台も使わないと学習できないような、資本主義の権化みたいなもので、さすがに僕はちょっと手が届かないので、最近少しずつ出てきているリアルタイムのサウンド処理のためのアルゴリズムを使って実験したり、作品を作ったりしています。

森川:AI開発者も貧乏人とお金持ちの格差が出てきましたよね。ディープマインド社がやっているような研究はすごい成果だとはおもいますが、うちで追試しようと思っても、圧倒的に計算資源が足りない。

徳井:でも、僕は割と小さなAIのモデルの面白さみたいなものは絶対にあるなとは思っています。もちろんGPTやJukeBoxなどの巨大なモデルと巨大なデータセットでマシンパワーを大量に使うやり方もあると思いますが、よく言えば汎用性が高く、悪く言うと最大公約数的なものになりがちですよね。そうではなくて、アーティストが自分のマシンでちょっと動かしたり学習することができて、それで生成したものを自分の作曲に使うとか、そういうフレームワークを大事にできないかなと思います。

僕も他のミュージシャンが使えるようにオーディオのプラグインを出しています。これは、僕が学習したモデルを公開するのではなくて、アーティストが通常の音楽制作のソフト上で自分独自のスタイルを学習させて、その上で使えるようにしています。もちろん、Googleがやっているように大量なデータを学習して生成するのとは違いますし、精度がすごくよいというわけではないのですが、自分なりのデータセットで学習したものから生成することで、より個々のアーティストの個性がその生成結果に反映されると思います。これをプライベートAIと呼ぶのか、マイクロAIと呼ぶのか分かりませんが。

森川:小さなAIという考え方は面白そうですね。巨大なお金持ちAIではアメリカに負けているけれども、そうしたやりくりをするという発想は日本人とすごく相性がいいかもしれない。

徳井:そうですね。あと、やはりあそこまで巨大なモデルだともう誤用ができず、決められた使い方しかできない面もあると思います。リソースも大量に必要ですし、データの精度が高くなりすぎることによりもたらされる制約はあると思います。

森川:ゲームの場合、昔のファミコン時代は日本の独擅場みたいなところがありました。日本人は非常にプアーな環境の中でやりくりしてエンターテイメントを創るのが本当にうまいので。ところが、ゲームマシンのパワーが上がって力技で作れるようになると海外の開発会社に力で負けてしまう。そのため、日本はもうAAAタイトルではなく、小粒でピリリと辛いタイプのゲームに戻ったほうがいいのではないかという流れもあります。もしかしたら、AIも同じような形でいけると面白い道が開けるかもしれませんね。

徳井:日本の場合、色々な伝統産業にしても、大量生産ではない手作業のクラフトマンシップが強くあるので、そういう部分でGPTのような巨大なAIではない、カスタムで小さなAIが役に立つ部分がたくさんあるのかなと門外漢ながら考えたりします。

森川:最近ではノーコードで使えるものも出てきてAIを使えるユーザー層が広がっていますし、小さなAIを扱う機会はもっと増えていくと思います。昔は、TensorFlowが分かっていないと何もできませんでしたが、今はそうではなくなってきていますし。

徳井:確かに、そうですね。

生き物の本質が絡む領域とAIの共存

森川:実は、いまだに僕が一番好きなAIは遺伝的アルゴリズムなんです。もうほとんど使われていないアルゴリズムですが。やはり自分がやりたいのは人工知能よりも人工生命なのだと、ゲームを作ってきて30年経ってようやく気づきました。生き物の本質みたいなところとAIが絡む領域が自分として非常に興味のあるところです。そこが、AIと人間の未来の合流点になるように気がしています。

高橋ミレイ(以下、高橋):徳井さんが『創るためのAI』の中でも紹介されたカール・シムズの「Galápagos(ガラパゴス)」を見たときに、森川さんのゲーム『アストロノーカ』をすぐに想起しました。

カール・シムズの《ガラパゴス》:ICCコレクション

森川:そうなんですよ。ICCに展示されている「Galápagos」は、僕も何度も見に行きました。「Galápagos」の要素だけだと遊びにならないので『アストロノーカ』には普通のゲーム的な遊び要素を入れていますが、根っこにある部分はまさにあの作品に通じると思います。『アストロノーカ』はそこにいる架空の生き物たち自身が工夫しながら自分の身体を環境に適応させながら畑を荒らしにくるという進化を、神視点で楽しむゲームにしました。

徳井:僕も、カール・シムズの「Galápagos」に出合わなかったら今の仕事はしていなかっただろうなというくらい、本当に衝撃を受けました。ちょうど大学の研究室を決めるタイミングであの作品に出合って、たまたま同じ年に人工生命や進化的アルゴリズムを扱う研究室が東大にできたので、すぐにそこを選びました。

やはり僕も、遺伝的アルゴリズムにはまだまだ可能性があると感じているところです。特に、今一般的に使われているような深層学習、特に教師あり学習は結局人間がゴールを設定するわけですよね。AIによる音楽生成は人間が過去に作った楽曲を学習して、それっぽいものを作るようになってしまっている。すると原理的には、本当の意味で新しいものがそこから出てくる可能性はすごく低くなってしまいます。

森川:そうですね。教師データを作る時点でその人間の意図が反映されてしまうので、意図的にすればするほど広がりはなくなりますよね。

徳井:進化計算や遺伝的アルゴリズムは過去に人間が作ったものをお手本にするわけではなく、もっとオープンエンドに新しいものを作っていくアルゴリズムなので、その中で本当に新しい発見や、思いもよらなかったものが出てくる可能性が高い。そこに大きな魅力を感じています。ただ、進化計算で難しいのは、解の候補を組み合わせて作ることはできるけど評価する必要があるというところですよね。音楽とか画像を進化計算で作るとき、やはり評価の部分が一番難しい。

森川:そうですね。遺伝的アルゴリズムを使うときも、当然フィットネス関数を作らなければいけないわけですが、ゲームの場合は割と分かりやすいです。たとえば、ゴールまで到達できたかできなかったかを評価の軸として、突破するのにかかった時間や、それによって失われた体力量など、数値として評価できる要素がたくさんあるので、音楽や絵画のように評価が主観的なものと比べると圧倒的に楽ですね。

徳井:カール・シムズの「Evolved Virtual Creatures」では、時間単位でどこまで遠くに行けたかによって、生き残るか生き残らないかが決まるようになっていたと思いますが、そういうことですね?

森川:そうです。逆に言うと、数値による評価の範囲を超えた、例えば「いかに面白い突破の仕方をしたか」という芸術点を測るようなことをするのは無理でしたね。意外性もまったく評価できない。面白みや美しさ、楽しさといった主観的なものはいまだにどう評価関数に落とし込んでいいのかわからないところです。

徳井:僕ももうずっと十何年と悩んでいるところです。研究室にいたときも悩んで、結局、当時は人が評価していました。1曲ずつ聞いて点数をつけて。その部分で今、深層学習などを使うことで人間っぽい評価をある程度システマティックに返せるようになってきているので、うまく組み合わせたら面白くなるのかなとは思っています。作る部分は遺伝的アルゴリズムを使って、評価する部分やフィットネス関数の部分は深層学習を使うというように。

森川:なるほど。それは面白いですね。そういう役割分担はありますね、確かに。評価のところは精度が上がったほうがいいので、精度を求めるタイプがいいと。徳井さんがやられているAI DJでは、DJの癖やパターンみたいなものを学習させるとき、選曲を対象にするのですか? それとも一連の流れや山場の持っていき方、観客の対応による変化などを学習させるのですか?

徳井:色々試してはいて、もともとは選曲を学習させていました。プレイリストを大量に集めてきて、人間の選曲のパターンを学習させるという形です。今は曲の類似度を定量化できるアルゴリズムを作っています。

DJは前の曲のノリや雰囲気をキープして選曲するのが基本中の基本ですが、その中でどう意外性を出すかが腕の見せ所です。例えば同じものが続いたらちょっと外してあげるなど、上手に期待を裏切る行為を良いタイミングで挟んでいくことになりますが、先ほどの話のようにAIが人間のプレイリストを学習してしまうと、最大公約数的な「まあそうだよね」というもの以上にはならないんですよね。ですが、ジャンルなどをすべて無視して単純な曲の類似度を定量化できるようにしたところ、より面白いものになったので、今はそのようにしています。

その上でずっとここ2年くらい試行錯誤しているのは長い時間のフローをいかに作るかということです。やはり起承転結が大事だったりするので、最初はおとなしめに始めてだんだん盛り上げていってというフローを長いスパンでどのように作るかが次の課題としてあります。

森川:そのあたりはゲームAIが抱えている課題と共通しているように思います。ゲームAIの中でもメタAIと呼ばれる領域がありますが、フラットに難易度が上がっていくのではプレイヤーが飽きてしまう。当然同じ難易度が続いてもダメだし、高難易度と低難易度が機械的に交互にくるパターンもダメです。やはり何かしらの波を作らないといけない。

今は、ゲームのクオリティが卓越したゲームデザイナーのセンスにかかっていますが、それをメタAIでやるならどうできるかなと考えています。個々のイベントの難易度を調節するだけではなくて、ゲーム全体をもう少し俯瞰的に見てこの辺で大きな山場を作ろうとか、ここでとんでもない意外性を入れたほうがいいねとか、そういうことを学習させていかないといけないと思っています。まだ全然うまくいっていないのですが。

徳井:今はやはり全体的な流れは人間が作っているのでしょうか?

森川:そうですね。そもそもメタAIを実装しているゲーム自体がまだ少ないです。やっているにしても、プレイヤーがここでリトライを重ねているから難易度を下げようとか、局所局所での対応になっています。自分の勉強不足かもしれませんが、大局的に流れを見るという事例はまだあまり聞いたことがないです。

徳井:評価というか、学習データをまず準備することが難しいのですか?

森川:教師ありだとそうですね。ただ、技術的な障壁よりも、ゲームとアニメの世界は非常に古い体質の世界なので、人間の知恵と努力とセンスの領域にAIが入ってくることをあまりよしとしてくれないという文化的障壁のほうが大きいように思います。

AIとインタラクションが予測不可能性を楽しむ土壌を育む

大内孝子(以下、大内):お二人は、AIと自分と対象としての人間をどうとらえていますか?

徳井:僕の場合は、AI DJもそうだし、自分で音楽を作っているときもそうですが、基本的に自分が作っているのは自分用のツールで、無料で公開もしています。自分とその自分が作ったAIとのインタラクションを通して、他の人が何かを考えたり感じてくれたり、あるいは僕がそのAIを使って、AIがなければありえなかったであろう音楽を作って、それを他の人に聞いてもらえるのがいいと思います。僕とAIがあって、その副産物に音楽などがあって、それが他の人に届けるという構図ですね。会社となると、もっとダイレクトにAIやツール自体を商品にしたりしますが。

大内:そのとき、人に対してどのようになってほしいとか、あるいはこのように変化してほしいと考えたりしますか?

徳井:それはありますね。まさに『創るためのAI』を書いた理由にもつながりますが、平たく言うと、みんなにまだ見えていない、こんな面白い使い方もあるというポテンシャルを知ってほしい。あるいはもう少しメタなレベルで、機械やソフトウェアを使うことで人間の創造性を拡張できるということを伝えたいです。作品によっては、そんなこととは関係なく、この音楽かっこいいでしょというのを感じてもらえればいいときもありますが。

森川:僕も徳井さんと同じですね。別にAIに限らず、自分が散歩していて面白いとか美しいとか、かわいいなと思ったものをSNSに投稿する動機とほとんど同じです。これ面白いでしょとか、こんなの見つけたらうれしいと誰かが同じように思ってくれることへの期待とともに世の中にリリースするというのが基本ですね。自分たちの場合は商品を作っているので、商品としても成り立つように連立方程式を解かなければいけませんが。もともとマーケットインの考え方でものを作れない人間なので、そこはちょっと開き直っているところがあります。実際、少しでも楽しんでくれる人がいればいいやと、すきあらばAIを突っ込んで企画を出すとこともあります。

大内:コンピュータは、今はもう手元のツールになってしまっていますが、当初はもっと人間の思考を拡大する装置として構想されていたことが黎明期のことについて書かれた文献などを読むと分かりますし、それが今のAIの話にもつながっていくのかなと思います。つまりAIは人間をもっと豊かにし、発想をさらに拡張させる手段になるはずです。お二人の活動はそこを引っ張ってくれるんじゃないかと思います。

徳井:そうですね、確かにそうだと思います。

高橋:一方で、お二人の作品からは技術と人間の程よい距離感を感じます。対象に対し、強く介入したりコントロールするという意図があまり感じられません。

徳井:そのような介入は苦手なところですね。その理由のひとつは、自分でもあまり分からないからです。もちろん、可能性があることや、こうやったら面白いというのは自分の体験として分かっていますが、まだ自分でも掴みきれていない部分がけっこうあります。まあ、分からないから面白くてやっているところはありますね。あまり自分が分からないことをさも分かったかのように言うのは避けたいところがあります。

森川:僕は高校生くらいまで、自分が面白いと思うこととまわりのみんなが面白いということがまったく合わなかったんです。東京に出てきてからは同じことに共感してくれる人がある程度はいることが分かったので、いまはすごく心の平穏を得ることができてますが、かといって、自分が面白いと思うことを多くの人が面白いと思ってくれるという自信がまったくないので、基本的に自分ははなから諦めているところがありますね。

高橋:最後にお二人にお聞きしたいのですが、これからもっと創作のためのAIがツールとして出てくると思いますが、そうなってきたとき、人間の創造性はどうなっていくと思われますか?

徳井:そうですね。層が厚くなるというか、多様化していくのではないかなと思います。これまでは「大文字の創造性」と言いますか、創造性というと有名なアーティストや音楽家の作品や創作活動と大仰に考えてしまう方が多いと思います。それが、AIに手助けされることによって、これまで創造的だと思われていなかったレベルの、ちょっとした創造性やカジュアルな創造性の発露がどんどん世の中に出てくるようになると思います。

音楽の生成も、AIを使って聞いたことのない音楽を聞いてみたいという欲求が僕は強いのですが、そういうAIの使い方もあるだろうし、あるいは作曲をしたことがなかった人もAIを使うことでそれなりに聞ける音楽を作れるという使い方も生まれると思います。たとえば、スマホで撮った動画をYouTubeに上げるときにこれまで多くの場合は既存のBGMを使っていたけど、これからはAIを使って自分で作ることができるようになるかもしれません。今まで0→1の世界で創造性のある人とない人という構図で考えがちだったのが、その間が埋まっていくみたいな感じですかね。フロンティアも拡張するだろうし中間も埋まっていくと考えています。

森川:AIが便利なツールとなって、今まで何かを作りたいと思いつつも手が動かなかった人たちの支援をしてくれる可能性は容易に想像がつきますし、そういう意味で使い手の分母は広がると思います。それも大事だけど、個人的には、ものづくりの現場にAIがクリエイターとして参加できる未来があると面白いと思っています。チューリングテストに軽々と受かるようなAIが出てきて、それが個性の強いアーティストとして存在するようなことが起こるんじゃないでしょうか。もうひとつの可能性としては、ものを作ることへの障壁が下がると今以上に作る人が増えて、あるところで量が質を凌駕するときが来ると思います。今はまだ過渡期で参加者が増えている段階だけど、それがある程度の数に達したときに何か大きなパラダイムシフトが起こるのではないかと期待しています。その結果、集団の中で何か発想の違いが生じていくような転換が起こるのではないかなと思います。

徳井:そうですね。それと、創造性の話だけではないのかもしれませんが、AIというものと多くの人が触れ合うようになって、予測不可能性とか思いもつかなかったことに対して人がどう対応するかという部分で変化が生まれるといいなと思います。AIという絶対的な他者と向き合うことで、みんながもっと考え方や感性の違いなどに対し寛容になり、異質なものを受け入れる土壌がAIと人のインタラクションを通して育まれていったらいいと考えています。ちょっと遠大な目標ですが(笑)

徳井直生|Nao Tokui

アーティスト、研究者。株式会社Qosmo 代表取締役、慶應義塾大学政策・メディア研究科 准教授。Computational Creativity and Beyondをモットーに、AIと人の共生による創造性の拡張を模索。AIを用いたインスタレーション作品群や楽曲で知られる。アーティスト、デザイナー、AI研究者/エンジニアなどから構成されるコレクティブ、Qosmo(コズモ)を率いて作品制作や技術開発に取り組むほか、慶應義塾大学SFCでComputational Creativity Labを主宰する。これまでに手がけた作品は、MoMA(ニューヨーク)、バービカン・センター(ロンドン)、NTT InterCommunication Center、アルスエレクトロニカなどで展示されている。

創るためのAI 機械と創造性のはてしない物語

第30回(2021年度)大川出版賞を受賞。Artificial Intelligence(AI)=人工知能を用いたアートや音楽など創作に関する取り組みを題材に、人間の創造性とAIの関係、その未来像について考察した一冊。

社会における注目度が急速に増し、日常の何気ない会話の中にも登場するほど、私たちの生活に浸透しつつあるAI。一方で、AIの実像について理解できている人はそう多くありません。「近いうちにAIが人間の能力を凌駕する」、「AIが仕事を奪う」といった話がマスメディアでまことしやかに囁かれ、「AI時代」を生き抜くために必要な能力を議論する書籍をよく目にするようになりました。機械的な計算を超人的なスピードと正確性でこなすAIに対して、「人間のアドバンテージは機械にはない創造性にある」、「AI時代を生き抜くためには創造性を養う必要がある」、そんな議論もよく耳にします。本書はこうした話とは、趣旨が大きく異なります。創造性を持つ人間と、持たないAIという二項対立でとらえるのではなく、まずは「機械は創造性を持ち得ない」という先入観を疑ってみることとします。その上で、「AIも人とは違う創造性を持ち得るのではないか」という仮説に基づいて議論を進めます。

AIとは何か。ただの道具か。AIによって人の能力、特に創造性をどのように拡張できるのか。そもそも、創造性とは何か──。機械による模倣が人の創造性を拡張してきた歴史を紐解きながら、世界中で行われている現在進行形の取り組みに注目し、より豊かなAIと創造性の未来を照らし出します。創造性という極めて人間的な心の働きを、新しい人工物の上で模倣することで、私たち人間の創造性について、新しい視座を得ようとする試みともいえます。AIというレンズを通すことで、創造するという行為が全く新しい姿を見せてくれることに驚くはずです。

Writer:大内孝子

RELATED ARTICLE関連記事

作曲支援AIは新しい音楽の歴史を生む:福山泰史氏インタビュー

2019.4.17音楽

作曲支援AIは新しい音楽の歴史を生む:福山泰史氏インタビュー

「人間とAIの共作」の可能性を追求したAI生成楽曲の最新事例

2021.4.30音楽

「人間とAIの共作」の可能性を追求したAI生成楽曲の最新事例

AI作曲家にノスタルジーは理解できるか:西木康智氏インタビュー

2021.3.31音楽

AI作曲家にノスタルジーは理解できるか:西木康智氏インタビュー

RANKING注目の記事はこちら