モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。
- TAG LIST
- CGCGへの扉安藤幸央機械学習ディープラーニング月刊エンタメAIニュース河合律子GANOpenAI音楽NVIDIA吉本幸記ニューラルネットワーク強化学習Google生成系AI三宅陽一郎QA人工知能学会GPT-3Stable Diffusion自然言語処理グーグルDeepMindFacebook森川幸人シナリオ大内孝子マイクロソフトChatGPT敵対的生成ネットワークルールベースアート映画キャラクターAIスクウェア・エニックスモリカトロンAIラボインタビューAIと倫理SIGGRAPHゲームプレイAI大規模言語モデル倫理デバッグNFTDALL-E2StyleGANプロシージャル遺伝的アルゴリズムモリカトロン著作権画像生成自動生成テストプレイメタAI画像生成AINPCテキスト画像生成ロボット深層学習ファッションCEDEC2019ディープフェイクVFXMidjourneyデジタルツインボードゲームDALL-ECLIPビヘイビア・ツリーCEDEC2021LLMCEDEC2020ゲームAIメタバース不完全情報ゲームVRナビゲーションAI畳み込みニューラルネットワークGDC 2021マンガJSAI2022AdobeNVIDIA OmniverseGDC 2019マルチエージェントCEDEC2022AIアート小説Stability AI懐ゲーから辿るゲームAI技術史toioジェネレーティブAIスポーツCNNBERT作曲MicrosoftUnityMinecraftアニメーションOmniverseメタJSAI2023鴫原盛之HTN階層型タスクネットワークソニー栗原聡手塚治虫汎用人工知能JSAI2020GTC2023TensorFlowインタビューバーチャルヒューマンイベントレポート対話型エージェントAmazonロボティクスDQNMeta水野勇太アバター3DCGUbisoftGenvid TechnologiesガイスターStyleGAN2デジタルヒューマンGTC2022教育音楽生成AIJSAI2021研究シムピープルMCS-AI動的連携モデルモーションキャプチャーElectronic ArtsNeRFマーケティングメタデータGDC SummerブロックチェーンCMMicrosoft Azureアストロノーカキャリア模倣学習eスポーツスタンフォード大学アーケードゲームテニスサイバーエージェントトレーディングカード音声認識メディアアートeSportsBLUE PROTOCOLシーマンaibo合成音声チャットボットAWS徳井直生斎藤由多加AlphaZeroTransformerGPT-2rinnaAIりんなカメラ環世界中島秀之PaLM哲学ベリサーブPlayable!理化学研究所SIGGRAPH ASIASFNetflix東京大学はこだて未来大学現代アートエージェントDARPAドローンシムシティImagenZorkバイアスプロンプトGPT-4ASBSアドベンチャーゲームTEZUKA2020CEDEC2023AI美空ひばりテキスト生成マルチモーダルバンダイナムコ研究所スパーシャルAI3DLEFT 4 DEADイーロン・マスク通しプレイOpenAI FiveStable Diffusion XL本間翔太CygamesAudio2Faceピクサープラチナエッグイーサリアムボエダ・ゴティエビッグデータ中嶋謙互Amadeus Codeデータ分析MILEナラティブNVIDIA RivaOmniverse ReplicatorWCCFレコメンドシステムNVIDIA DRIVE SimWORLD CLUB Champion FootballNVIDIA Isaac Simセガ柏田知大軍事田邊雅彦トレカMax CooperGPT類家利直PyTorchChatGPT4眞鍋和子バンダイナムコスタジオ大澤博隆SFプロトタイピング齊藤陽介マインクラフトお知らせMagic Leap OneTencentバスケットボールサルでもわかる人工知能text-to-3DVAEDreamFusionブラック・ジャックリップシンキングUbisoft La Forge自動運転車ワークショップ知識表現ウォッチドッグス レギオンIGDA秋期GTC2022市場分析どうぶつしょうぎEpic GamesRobloxジェイ・コウガミ音楽ストリーミングMITAIロボ「迷キュー」に挑戦野々下裕子マシンラーニング5GMuZeroRival Peakpixivクラウド対話エンジン3Dスキャンリトル・コンピュータ・ピープルCodexシーマン人工知能研究所コンピューティショナル・フォトグラフィーPreferred Networksゴブレット・ゴブラーズ絵画ARMicrosoft DesignerイラストシミュレーションSoul Machines柿沼太一完全情報ゲームELSI坂本洋典釜屋憲彦ウェイポイントパス検索対談藤澤仁生物学GTC 2022画像認識GPT-3.5ハリウッドSiemensストライキStyleCLIPDeNA長谷洋平クラウドコンピューティングmasumi toyotaIBM宮路洋一OpenSeaGDC 2022SNSGen-1TextWorldEarth-2BingMagenta音声生成AIELYZA PencilScenarioSIGGRAPH2023テキスト画像生成AI松尾豊AIピカソGTC2021AI素材.comCycleGANテンセントAIQVE ONEデータマイニングNetHackBardキャラクターモーションControlNetNBAフェイクニュースRPG法律SIGGRAPH 2022世界モデルレベルデザインAIボイスアクターNVIDIA CanvasGPUALife人工生命オルタナティヴ・マシンサウンドスケープLaMDATRPGマジック:ザ・ギャザリングAI Dungeonぱいどん手塚眞不気味の谷ナビゲーションメッシュインディーゲーム高橋ミレイ深層強化学習松原仁松井俊浩武田英明ELYZAフルコトNEDOELYZA DIGEST建築音声合成広告西成活裕Apex LegendsELIZA群衆マネジメントライブポートレイトNinjaコンピュータRPGライブビジネスWonder Studioアップルタウン物語新型コロナ土木KELDIC周済涛BIMメロディ言語清田陽司インフラゲームTENTUPLAYサイバネティックスMARVEL Future FightAstro人工知能史Amazon BedrockタイムラプスEgo4DAI哲学マップバスキア星新一X.AI日経イノベーション・ラボStyleGAN-XLX Corp.敵対的強化学習StyleGAN3Twitter階層型強化学習GOSU Data LabGANimatorXホールディングスWANNGOSU Voice AssistantVoLux-GANMagi竹内将SenpAI.GGProjected GANMobalyticsSelf-Distilled StyleGANSDXL馬淵浩希ニューラルレンダリングRTFKT岡島学AWS SagemakerPLATONIKE映像セリア・ホデント形態素解析frame.ioClone XUXAWS LambdaFoodly村上隆誤字検出森山和道認知科学中川友紀子Digital MarkゲームデザインSentencePieceアールティSnapchatLUMINOUS ENGINEクリエイターコミュニティLuminous ProductionsBlenderBot 3バーチャルペットパターン・ランゲージ竹村也哉Meta AINVIDIA NeMo Serviceちょまどマーク・ザッカーバーグヴァネッサ・ローザGOAPWACULVanessa A RosaAdobe MAX 2021陶芸自動翻訳Play.ht音声AIAIライティングLiDAROmniverse AvatarAIのべりすとPolycamFPSQuillBotdeforumマルコフ決定過程NVIDIA MegatronCopysmith動画生成AINVIDIA MerlinJasperハーベストNVIDIA MetropolisForGamesパラメータ設計ゲームマーケットバランス調整岡野翔太協調フィルタリング郡山喜彦人狼知能テキサス大学ジェフリー・ヒントンGoogle I/O 2023AlphaDogfight TrialsAI Messenger VoicebotGoogle I/OエージェントシミュレーションOpenAI Codex武蔵野美術大学StarCraft IIHyperStyleBingAIFuture of Life InstituteRendering with StyleIntelDisneyFireflyLAIKADisneyリサーチヴィトゲンシュタインPhotoshopRotomationGauGAN論理哲学論考LightroomGauGAN2京都芸術大学Canvaドラゴンクエストライバルズ画像言語表現モデル不確定ゲームSIGGRAPH ASIA 2021PromptBaseBOOTHDota 2モンテカルロ木探索ディズニーリサーチpixivFANBOXMitsuba2バンダイナムコネクサス虎の穴ソーシャルゲームEmbeddingワイツマン科学研究所ユーザーレビューFantiaGTC2020CG衣装mimicとらのあなNVIDIA MAXINEVRファッションBaidu集英社淡路滋ビデオ会議ArtflowERNIE-ViLG少年ジャンプ+グリムノーツEponym古文書ComicCopilotゴティエ・ボエダ音声クローニング凸版印刷コミコパGautier Boeda階層的クラスタリングGopherAI-OCRゲームマスター画像判定Inowrld AIJuliusSIE鑑定ラベル付けMODTPRGOxia PalusGhostwriterバーチャル・ヒューマン・エージェントtoio SDK for UnityArt RecognitionSkyrimクーガー田中章愛実況パワフルサッカースカイリム石井敦銭起揚NHC 2021桃太郎電鉄RPGツクールMZ茂谷保伯池田利夫桃鉄ChatGPT_APIMZGDMC新刊案内パワサカダンジョンズ&ドラゴンズマーベル・シネマティック・ユニバースコナミデジタルエンタテインメントOracle RPG成沢理恵MITメディアラボMCU岩倉宏介深津貴之アベンジャーズPPOxVASynthマジック・リープDigital DomainMachine Learning Project CanvasLaser-NVMagendaMasquerade2.0国立情報学研究所ノンファンジブルトークンDDSPフェイシャルキャプチャー石川冬樹MERFサッカーモリカトロン開発者インタビュースパコンAlibaba里井大輝Kaggle宮本茂則スーパーコンピュータVQRF山田暉松岡 聡nvdiffrecAssassin’s Creed OriginsAI会話ジェネレーターTSUBAME 1.0NeRFMeshingSea of ThievesTSUBAME 2.0LERFGEMS COMPANYmonoAI technologyLSTMABCIマスタリングモリカトロンAIソリューション富岳TikTok初音ミクOculusコード生成AISociety 5.0リアム・ギャラガー転移学習テストAlphaCode夏の電脳甲子園グライムスBaldur's Gate 3Codeforces座談会BoomyCandy Crush Saga自己増強型AItext-to-imageジョン・レジェンドSIGGRAPH ASIA 2020COLMAPザ・ウィークエンドADOPNVIDIA GET3DドレイクデバッギングBigGANGANverse3DTEZUKA2023MaterialGANRNNグランツーリスモSPORTAI絵師エッジワークスReBeLグランツーリスモ・ソフィーUGC日本音楽作家団体協議会GTソフィーPGCFCAVolvoFIAグランツーリスモチャンピオンシップVoiceboxNovelAIさくらインターネットRival PrakDGX A100NovelAI DiffusionVTuberぷよぷよユービーアイソフトWebcam VTuberモーションデータ立教大学星新一賞大阪公立大学北尾まどかHALOポーズ推定TCG将棋メタルギアソリッドVフォートナイトメッシュ生成KLabFSMメルセデス・ベンツQRコードMagic Leap囲碁ナップサック問題Live NationEpyllionデンソー汎用言語モデルWeb3.0マシュー・ボールデンソーウェーブAIOpsムーアの法則原昌宏Spotifyスマートコントラクト日本機械学会Replica Studioロボティクス・メカトロニクス講演会amuseChitrakarQosmoAdobe MAX 2022トヨタ自動車巡回セールスマン問題Adobe MAXかんばん方式ジョルダン曲線メディアAdobe Research村井源政治Galacticaプロット生成クラウドゲーミングがんばれ森川君2号オムロン サイニックエックス和田洋一リアリティ番組映像解析FastGANStadiaジョンソン裕子セキュリティ4コママンガMILEsNightCafe東芝デジタルソリューションズ電気通信大学インタラクティブ・ストリーミングLuis RuizSATLYS 映像解析AI稲葉通将インタラクティブ・メディアポケモン橋本敦史PFN 3D ScanElevenLabs東京工業大学HeyGenLudo博報堂After EffectsラップPFN 4D Scan絵本SIGGRAPH 2019ArtEmisZ世代DreamUp出版AIラッパーシステムDeviantArtAmmaar ReshiWaifu DiffusionStoriesGROVERプラスリンクス ~キミと繋がる想い~元素法典StoryBirdFAIRSTCNovel AIVersedチート検出Style Transfer ConversationOpen AIProlificDreamerオンラインカジノRCPUnity SentisアップルRealFlowRinna Character PlatformUnity MuseiPhoneCALACaleb WardDeep Fluids宮田龍MeInGameAmelia清河幸子AIGraphブレイン・コンピュータ・インタフェースバーチャルキャラクター西中美和BCIGateboxアフォーダンス安野貴博Learning from VideoANIMAKPaLM-SayCan斧田小夜予期知能逢妻ヒカリ宮本道人セコムGitHub CopilotLLaMA 2ユクスキュルバーチャル警備システムCode as PoliciesLLaMAカント損保ジャパンCaPHugging FaceCM3leon上原利之Stable DoodleドラゴンクエストエージェントアーキテクチャアッパーグラウンドコリジョンチェックT2I-AdapterPAIROCTOPATH TRAVELERxAI西木康智OCTOPATH TRAVELER 大陸の覇者山口情報芸術センター[YCAM]アルスエレクトロニカ2019品質保証YCAM日本マネジメント総合研究所StyleRigAutodeskアンラーニング・ランゲージVoyager逆転オセロニアBentley Systemsカイル・マクドナルドLily Hughes-Robinsonワールドシミュレーターローレン・リー・マッカーシーColossal Cave Adventure奥村エルネスト純いただきストリートH100鎖国[Walled Garden]プロジェクトAdventureGPT齋藤精一大森田不可止COBOLSIGGRAPH ASIA 2022リリー・ヒューズ=ロビンソン高橋智隆DGX H100VToonifyBabyAGIロボユニザナックDGX SuperPODControlVAEGPT-3.5 Turbo泉幸典仁井谷正充変分オートエンコーダーカーリングロボコレ2019Instant NeRFフォトグラメトリウィンブルドンartonomous回帰型ニューラルネットワークbitGANsDeepJoin戦術分析ぎゅわんぶらあ自己中心派Azure Machine LearningAzure OpenAI Serviceパフォーマンス測定意思決定モデル脱出ゲームDeepLIoTHybrid Reward Architectureコミュニティ管理DeepL WriteProFitXウロチョロスSuper PhoenixWatsonxProject MalmoオンラインゲームAthletica気候変動コーチングProject Paidiaシンギュラリティ北見工業大学Project Lookoutマックス・プランク気象研究所レイ・カーツワイル北見カーリングホールWatch Forビョルン・スティーブンスヴァーナー・ヴィンジ画像解析気象モデルRunway ResearchじりつくんLEFT ALIVE気象シミュレーションMake-A-VideoNTT Sportict長谷川誠ジミ・ヘンドリックス環境問題PhenakiAIカメラBaby Xカート・コバーンエコロジーDreamixSTADIUM TUBEロバート・ダウニー・Jr.エイミー・ワインハウスSDGsText-to-ImageモデルPixelllot S3ソフトバンクYouTubeダフト・パンクメモリスタAIスマートコーチGlenn MarshallThe Age of A.I.Story2Hallucination音声変換LatitudeレコメンデーションJukeboxDreamboothVeap Japanヤン・ルカンEAPneoAIPerfusionSIFT福井千春DreamIconニューラル物理学DCGAN医療mign毛髪MOBADANNCEメンタルケアstudiffuse荒牧英治人事ハーバード大学Edgar HandyAndreessen Horowitz中ザワヒデキ研修デューク大学大屋雄裕QA Tech Night中川裕志mynet.aiローグライクゲーム松木晋祐Adreeseen Horowitz東京理科大学下田純也NVIDIA Avatar Cloud Engine人工音声NeurIPS 2021産業技術総合研究所桑野範久Replica StudiosリザバーコンピューティングSmart NPCsプレイ動画ヒップホップ対話型AIモデルRoblox Studio詩ソニーマーケティングPromethean AIサイレント映画もじぱnote音源分離環境音暗号通貨note AIアシスタントMusiioFUZZLEKetchupEndelAlterationAI Newsユニバーサルミュージック粒子群最適化法Art Selfie進化差分法オープンワールドArt TransferSonar群知能下川大樹AIFAPet PortraitsSonar+Dウィル・ライト高津芳希P2EBlob OperaWeb3大石真史クリムトDolby AtmosBEiTStyleGAN-NADASonar Music FestivalDETRゲームエンジンDreamerV3ライゾマティクスSporeUnreal Engineクリティックネットワーク真鍋大度デノイズ南カリフォルニア大学Unity for Industryアクターネットワーク花井裕也画像処理DMLabRitchie HawtinSentropyGLIDEControl SuiteErica SynthCPUDiscordAvatarCLIPAtari 100kUfuk Barış MutluSynthetic DataAtari 200MJapanese InstructBLIP AlphaCALMYann LeCun日本新聞協会プログラミングサム・アルトマン鈴木雅大AIいらすとやソースコード生成コンセプトアートAI PicassoGMAIシチズンデベロッパーSonanticColie WertzEmposyGitHubCohereリドリー・スコットAIタレントウィザードリィMCN-AI連携モデル絵コンテAIタレントエージェンシーUrzas.aiストーリーボードmodi.ai介護大阪大学BitSummit西川善司並木幸介KikiBlenderBitSummit Let’s Go!!サムライスピリッツ森寅嘉Zoetic AIRed RamゼビウスSIGGRAPH 2021ペットマーダーミステリーストリートファイター半導体Digital Dream LabsPaLM APIデジタルレプリカTopaz Video Enhance AICozmoMakerSuiteGOT7DLSSタカラトミーSkebsynthesia山野辺一記NetEaseLOVOTDreambooth-Stable-DiffusionHumanRF大里飛鳥DynamixyzMOFLINゲーム背景Actors-HQRomiGoogle EarthSAG-AFTRAU-NetミクシィGEPPETTO AIWGA13フェイズ構造ユニロボットStable Diffusion web UIチャーリー・ブルッカーADVユニボPoint-EXLandGatoアパレル岡野原大輔AGIAI model自己教師あり学習DEATH STRANDINGAI ModelsIn-Context Learning(ICL)Eric Johnson汎用強化学習AIZMO.AILoRAデザインMOBBY’SファインチューニングOculus Questコジマプロダクションロンドン芸術大学モビーディックグランツーリスモ生体情報デシマエンジンGoogle Brainダイビング量子コンピュータSound Controlアウトドアqubit写真SYNTH SUPERAIスキャニングIBM Quantum System 2照明Maxim PeterKarl Sims自動採寸北野宏明Joshua RomoffArtnome3DLOOKダリオ・ヒルハイパースケープICONATESizerジェン・スン・フアン山崎陽斗ワコールHuggingFace立木創太スニーカーStable Audio浜中雅俊UNSTREET宗教ミライ小町Newelse仏教テスラ福井健策CheckGoodsコカ・コーラGameGAN二次流通食品パックマンTesla Bot中古市場Coca‑Cola Y3000 Zero SugarTesla AI DayWikipediaDupe KillerCopilot Copyright Commitmentソサエティ5.0Sphere偽ブランドテラバースSIGGRAPH 2020バズグラフXaver 1000配信京都大学ニュースタンテキ養蜂立福寛東芝Beewiseソニー・ピクチャーズ アニメーション音声解析DIB-R倉田宜典フィンテック感情分析投資Fosters+Partners韻律射影MILIZEZaha Hadid Architects韻律転移三菱UFJ信託銀行
DALL-E 2とImagenの比較から見る高品質テキスト画像生成モデルの可能性とリスク
2022年4月、OpenAIは入力したテキストの内容を反映した高品質な画像を生成するAIモデルDALL-E 2を発表してAI業界に衝撃を与えました。その発表から約1か月後、グーグルはDALL-E 2と同様なテキスト画像生成モデルImagenを公開して大きな注目を集めました。本稿ではこの2つのモデルを比較しながらそれぞれの技術的な特徴をまとめたうえで、これらのモデルがもつビジネス的可能性と潜在的リスクを述べていきます。
DALL-E 2とImagenの共通点と相違点
DALL-E 2とImagenは、両方とも入力テキストからテキスト埋め込みを生成後、この埋め込みを参照したうえで拡散モデルを使って画像を生成しています。こうした処理におけるテキスト埋め込みとは、文字列であるテキストをその特徴を反映したまま数値情報に変換したものです。また拡散モデルとは、その特徴を強調するようにして画像を生成するモデルです。「拡散(diffusion)」という表現が使われているのは、このモデルのアルゴリズムにおいて、画像の特徴を抽出するためにランダムな点を無数に挿入して言わば「ノイズが拡散した」状態にしてから、そのノイズ状態から特徴を復元するためと考えられます。
DALL-E 2とImagenの相違点は、テキスト埋め込みを生成する処理にあります。前者はOpenAIが開発した任意の画像に対して適切なキャプションを生成する画像認識モデルCLIPを使っているのに対して、後者はグーグルが開発した大規模言語モデルT5を使っています。アーキテクチャに違いがある2つのモデルに関して、グーグルは画像生成能力を比較する実験を行いました。その結果、ImagenがDALL-E 2を上回っていることがわかりました。Imagenは、DALL-E 2が苦手としている文字列をふくんだ画像を適切に生成できたのでした。例えば以下の画像は「Text to Imageと書かれた店頭(A storefront with Text to Image written on it)」というテキストを入力して生成されたもので、左側4枚がImagenによって生成された画像、右側4枚がDALL-E 2です。
グーグルはImagenの性能を評価するなかで、テキスト埋め込みを生成する言語モデルのサイズを大きくしたほうが、拡散モデルのサイズを大型化するよりも生成画像の品質向上に貢献することも発見しました。この発見は、今後のテキスト画像生成モデル開発が言語処理部分を改善する方向に進展するかも知れないことを示唆しています。
アイキャッチ画像の自動生成などに応用可能
DALL-E 2とImagenのような高品質なテキスト画像生成モデルの誕生は、いわゆる絵心がない人であっても説得力のある画像を短時間で制作できるようになる未来を予感させます。こうした万人がクリエイティブなスキルを得られる時代に備えるべく、マーケティングにおけるAI活用を研究しているMarketing AI Instituteは2022年4月、テキスト画像生成モデルのビジネス活用事例について考察した記事を公開しました。その記事で挙げられている活用事例は、以下のようなものです。
- ブログ記事、電子書籍、ビデオ、ポッドキャストエピソードのためのユニークで魅力的なアイキャッチ画像
- ウェブサイトページやランディングページに使用する、ユニークで魅力的な画像
- 社内外で使用されるデジタルまたは印刷物のブランド担保のための画像
- すべてのデジタルアセットにおける複雑な情報、製品、またはサービスを説明するのに役立つ画像
- 広告クリエイティブで際立つアイキャッチ画像
- ブランディング、キャンペーンのアイデア、ビデオスクリプト、コマーシャルなどのブレーンストーミングに使えるモックアップ画像
- ロゴのモックアップまたは最終バージョン
- より複雑な画像生成プロジェクトにおいて、人間のデザイナーを鼓舞し導くためのモックアップ
以上に挙げた事例のほかにも画像制作が関わる仕事であれば、テキスト画像生成モデルが活用されるようになるでしょう。こうした事例から言えるのは、同モデルはクリエイティブ業界の産業構造や働き方を一変させるポテンシャルを秘めている、ということです。
ちなみに、日本語に対応したテキスト画像生成モデルが開発された場合、「ライトノベルの挿絵を自動生成する」「プレゼン用にいらすとや風のイラストを自動生成する」のような活用事例が考えられるでしょう。
バイアスや悪用のリスクへの対処
高品質テキスト画像生成モデルは産業や文化を変革する可能性を秘めている一方で、人の尊厳を傷つけたり悪用されたりするリスクがあります。というのも、これらのモデルが生成する画像には、時として文化、ジェンダー、宗教に関するバイアスがふくまれてしまうからです。さらには、悪意にもとづいて不適切な画像が生成される可能性も排除できません。
以上のようなリスクがあるため、グーグルはImagenを一般ユーザに公開するのを控えました。対してOpenAIは、招待ユーザにDALL-E 2を使ってもらってそのリスクを評価する評価運用を進めています。こうした評価運用については、その内容をまとめた文書がGitHubで公開されています。同文書では、DALL-E 2に潜在するリスクがさまざまな角度から論じられています。バイアスに関しては、例えば同モデルに「a wedding」というテキストを入力すると、西洋式の結婚式の画像が多数出力される一方で、神前結婚式のそれは出力されません。この事例は、同モデルが西欧の文化や価値観にもとづいて画像を出力することを示しています。
不適切な画像が生成される可能性に関しては、暴力的あるいは性的な画像を生成する可能性のある単語を入力不可とするフィルタリング処理を実装することで対処しています。しかし、この処理を回避して不適切な画像が生成される余地はあります。例えば、「ケチャップ」と入力すれば、入力されるコンテクストによっては流血のように見える画像を生成できます。
とくに悪用が懸念される各国の要人やセレブリティの顔画像の生成については、DALL-E 2開発段階でこうした人々の顔を生成できないように制限を加えました。もっとも、こうした制限を加えたとしても要人やセレブリティに似た顔画像を生成する可能性を完全に排除できたわけではありません。
DALL-E 2が発表された直後の2022年4月7日、OpenAIのCEOを務めるサム・アルトマン氏は同モデルについて所感を述べたブログ記事を公開しました。同氏は同モデルを「私たち人間ができることが、特定のスキルではなく良いアイデアによって限界づけられる世界の一例」を実現するものと絶賛する一方で、安全な活用のためには評価運用が不可欠とも強調しています。そして、2022年の夏ごろには製品版を一般ユーザに公開する予定とも述べています。製品版DALL-E 2が一般公開される頃には、同モデルのリスクを許容範囲に緩和にできる運用体制が整っていることでしょう。
以上に解説した高品質テキスト画像生成モデルが実用化されると、一部のクリエイティブなタスクが代替または自動化されることでそのタスクに関わる雇用が消滅する一方で、全く新規かつクリエイティブなタスクとスキルを必要とする新たな雇用が生み出されると考えられます。こうした事態に対処するには、AIとクリエイティブな共創関係を築くのが得策なのではないでしょうか。
Writer:吉本幸記