モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。

TAG LIST
CGCGへの扉生成AI安藤幸央吉本幸記月刊エンタメAIニュース河合律子機械学習OpenAIディープラーニングLLM大規模言語モデル音楽GoogleNVIDIAグーグルモリカトロンGAN森川幸人ChatGPT三宅陽一郎強化学習DeepMindStable Diffusion人工知能学会ニューラルネットワークシナリオQAマイクロソフトAIと倫理GPT-3自然言語処理SIGGRAPHFacebook倫理大内孝子映画スクウェア・エニックスルールベースアート著作権音楽生成AIキャラクターAI敵対的生成ネットワークゲームプレイAIMinecraftNPC3DCG動画生成AIデバッグモリカトロンAIラボインタビューアニメーションNFT画像生成VFXロボットファッションStyleGANプロシージャルディープフェイクDALL-E2マルチモーダル遺伝的アルゴリズム自動生成MidjourneyRed RamAdobeVRメタAIマンガテストプレイMeta画像生成AIインタビューゲームAI小説ボードゲーム深層学習CEDEC2019toio教育MicrosoftマインクラフトCLIPテキスト画像生成NeRF不完全情報ゲームビヘイビア・ツリーDALL-ECEDEC2021デジタルツインメタバースStability AIPlayable!高橋力斗GeminiSora作曲アストロノーカロボティクスナビゲーションAI畳み込みニューラルネットワークARアップルスポーツ手塚治虫汎用人工知能3D広告CEDEC2020AIアートはこだて未来大学エージェントGDC 2021バーチャルヒューマンメタデジタルヒューマンJSAI2022ELSIプロンプトGPT-4GDC 2019マルチエージェントHTNソニー栗原聡CNN懐ゲーから辿るゲームAI技術史鴫原盛之NVIDIA Omniverse市場分析東京大学CEDEC2022ジェネレーティブAIDALL-E 3言霊の迷宮CM音声認識UbisoftSIGGRAPH ASIA階層型タスクネットワークJSAI2020マーケティングMicrosoft AzureUnityアドベンチャーゲームインディーゲーム音声合成BERTOmniverseRobloxがんばれ森川君2号AIQVE ONE世界モデルGTC2023JSAI2023電気通信大学AppleGPT-4oJSAI2024ブロックチェーンイベントレポート対話型エージェントシーマン水野勇太ガイスター斎藤由多加YouTubeSF研究シムシティシムピープルTEZUKA2020スパーシャルAIElectronic ArtsメタデータTensorFlowキャリア模倣学習AmazonDQNSIEアバターGenvid TechnologiesStyleGAN2JSAI2021ZorkMCS-AI動的連携モデルモーションキャプチャーAGICygamesサイバーエージェント合成音声モリカトロン開発者インタビュー宮本茂則AWS徳井直生GTC2022NetflixUnreal Engineテキスト生成トレーディングカードメディアアートOpen AIベリサーブGPT-3.5音声生成AI松木晋祐Bardブラック・ジャック村井源稲葉通将マーダーミステリーCEDEC2023RunwayAmadeus Code人狼知能eSportsワークショップクラウドAlphaZeroAIりんなカメラ環世界中島秀之宮路洋一理化学研究所人事DARPAドローン人工生命ASBSぱいどんAI美空ひばり手塚眞GDC Summer岡島学eスポーツスタンフォード大学テニスBLUE PROTOCOLaibo銭起揚自動運転車TransformerGPT-2哲学現代アートバンダイナムコ研究所ELYZANVIDIA RivaチャットボットEpic GamesrinnaSNS松尾豊データマイニングゲームエンジンImagenバイアスサム・アルトマンデザインNEDO森山和道自動翻訳アーケードゲームセガ類家利直大澤博隆SFプロトタイピングコナミデジタルエンタテインメントtext-to-imagetext-to-3DDreamFusionAIロボ「迷キュー」に挑戦Adobe MAXPreferred NetworksPaLMGitHub CopilotGen-1ControlNet建築イーロン・マスクStable Diffusion XLAudio2FaceGoogle I/OFireflyTikTok立教大学KLabLLaMAハリウッドテキスト画像生成AI法律LoRA論文NianticXRApple Vision ProVeoCEDEC2024Runway Gen-3 AlphaスーパーマリオブラザーズWhiskSIGGRAPH Asia 2024GDC 2025JSAI2025CEDEC2025OpenAI Fiveピクサービッグデータナラティブ眞鍋和子齊藤陽介成沢理恵お知らせMagic Leap Oneサルでもわかる人工知能リップシンキングUbisoft La Forge知識表現IGDAどうぶつしょうぎジェイ・コウガミ音楽ストリーミングマシンラーニング5G対話エンジンシーマン人工知能研究所ゴブレット・ゴブラーズ完全情報ゲームウェイポイントパス検索藤澤仁画像認識DeNA長谷洋平ぎゅわんぶらあ自己中心派ウロチョロステンセントNBAフェイクニュースウィル・ライトレベルデザインGPUALifeオルタナティヴ・マシンサウンドスケープTRPGAI Dungeonゼビウス不気味の谷写真松井俊浩パックマン通しプレイ本間翔太馬淵浩希中嶋謙互レコメンドシステム軍事PyTorchモンテカルロ木探索バンダイナムコスタジオ田中章愛サッカーバスケットボールVAERNNウォッチドッグス レギオンHALOMITMuZeroRival Peakリトル・コンピュータ・ピープルコンピューティショナル・フォトグラフィー絵画シミュレーション坂本洋典釜屋憲彦生物学StyleCLIPmasumi toyotaTextWorldBingMagentaGTC2021CycleGANNetHackAIボイスアクター南カリフォルニア大学NVIDIA CanvasNetEaseナビゲーションメッシュ高橋ミレイ深層強化学習ELYZA DIGESTELIZALEFT 4 DEADプラチナエッグイーサリアムボエダ・ゴティエOmniverse ReplicatorNVIDIA DRIVE SimNVIDIA Isaac SimDisneyAI会話ジェネレーターグランツーリスモ・ソフィーVTuberフォートナイトQosmoポケモンCodexSoul Machinesバーチャルキャラクター対談GTC 2022SiemensクラウドコンピューティングOpenSeaGDC 2022Earth-2エコロジーELYZA Pencil医療キャラクターモーションRPGSIGGRAPH 2022LaMDAマジック:ザ・ギャザリング介護松原仁武田英明フルコトデータ分析MILEWCCFWORLD CLUB Champion Football柏田知大田邊雅彦トレカMax Cooper京都芸術大学ラベル付け秋期GTC2022野々下裕子pixivセキュリティ3DスキャンMicrosoft Designerイラスト柿沼太一ScenarioAIピカソAI素材.comAndreessen HorowitzQA Tech Night下田純也桑野範久DreamerV3大阪大学Blenderゲーム背景Point-EアパレルBIMGPTPhotoshopChatGPT4コミコパTencentTEZUKA2023大阪公立大学オムロン サイニックエックス橋本敦史宮本道人LLaMA 2Hugging FacexAIストライキVoyagerIBMソフトバンクSIGGRAPH2023音源分離ユニバーサルミュージックWeb3BitSummitファインチューニンググランツーリスモ北野宏明立福寛FSM-DNNMindAgent効果音NVIDIA ACE慶應義塾大学ヒストリアAI Frog Interactive新清士ComfyUISuno AIKaKa CreationVOICEVOXGPTs3D Gaussian SplattingGDC 2024ポケットモンスターSIMAGemma 2Inworld AIIEEE早稲田大学Apple IntelligenceWWDCWWDC 2024Perplexityくまうた濱田直希ソニー・インタラクティブエンタテインメント遊戯王佐竹空良九州大学伊藤黎Sakana AIByteDanceLINEヤフーDOOMGameNGen社員インタビューMovie GenPlayable!MobilePeridot早瀬悠真Veo 2SONYDeepSeekGDCCube 3DモリカトロンAIコネクトベンチマークHao AI LabClaudeモリカコミックジョージア工科大学MeshyVeo 3ゲーム映像パラメータ設計バランス調整エージェントシミュレーションDota 2ソーシャルゲーム淡路滋グリムノーツゴティエ・ボエダGautier BoedaJuliusTPRGバーチャル・ヒューマン・エージェントクーガー石井敦茂谷保伯マジック・リープノンファンジブルトークン里井大輝GEMS COMPANY初音ミク転移学習デバッギング北尾まどか将棋ナップサック問題SpotifyReplica Studioamuseクラウドゲーミング和田洋一StadiaSIGGRAPH 2019iPhoneAIGraph予期知能ドラゴンクエストPAIRアルスエレクトロニカ2019逆転オセロニア奥村エルネスト純齋藤精一高橋智隆ロボユニ泉幸典ロボコレ2019意思決定モデルLEFT ALIVE長谷川誠Baby Xロバート・ダウニー・Jr.The Age of A.I.レコメンデーションMOBA研修mynet.ai人工音声プレイ動画群知能Sporeデノイズ画像処理CPUGMAIウィザードリィ西川善司サムライスピリッツストリートファイター山野辺一記大里飛鳥13フェイズ構造Oculus Quest生体情報照明山崎陽斗立木創太GameGANソサエティ5.0SIGGRAPH 2020DIB-RApex LegendsNinjaTENTUPLAYMARVEL Future Fightタイムラプスバスキア階層型強化学習WANN竹内将セリア・ホデントUX認知科学ゲームデザインLUMINOUS ENGINELuminous Productionsパターン・ランゲージちょまどFPSマルコフ決定過程協調フィルタリングAlphaDogfight TrialsStarCraft IIFuture of Life InstituteIntelLAIKARotomationドラゴンクエストライバルズ不確定ゲームEmbeddingGTC2020NVIDIA MAXINEビデオ会議階層的クラスタリングtoio SDK for UnityGDMCMITメディアラボMagendaDDSPKaggleAssassin’s Creed OriginsSea of ThievesmonoAI technologyOculusテストBaldur's Gate 3Candy Crush SagaSIGGRAPH ASIA 2020BigGANMaterialGANReBeLVolvoRival PrakユービーアイソフトメタルギアソリッドVFSM汎用言語モデルChitrakar巡回セールスマン問題ジョルダン曲線リアリティ番組ジョンソン裕子MILEsインタラクティブ・ストリーミングインタラクティブ・メディアLudoArtEmisGROVERFAIRチート検出オンラインカジノRealFlowDeep FluidsMeInGameブレイン・コンピュータ・インタフェースBCILearning from VideoユクスキュルカントエージェントアーキテクチャOCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者StyleRigいただきストリート大森田不可止ザナック仁井谷正充Azure Machine Learning脱出ゲームHybrid Reward ArchitectureSuper PhoenixProject MalmoProject PaidiaProject LookoutWatch Forジミ・ヘンドリックスカート・コバーンエイミー・ワインハウスダフト・パンクGlenn MarshallStory2HallucinationJukeboxSIFTDCGANDANNCEハーバード大学デューク大学ローグライクゲームNeurIPS 2021ヒップホップサイレント映画環境音粒子群最適化法進化差分法下川大樹高津芳希大石真史BEiTDETRSentropyDiscordCALMプログラミングソースコード生成シチズンデベロッパーGitHubMCN-AI連携モデル並木幸介森寅嘉SIGGRAPH 2021半導体Topaz Video Enhance AIDLSSDynamixyzU-NetADVXLandDEATH STRANDINGEric JohnsonコジマプロダクションデシマエンジンMaxim PeterJoshua Romoffハイパースケープミライ小町テスラTesla BotTesla AI Dayバズグラフニュースタンテキ東芝倉田宜典韻律射影韻律転移コンピュータRPGアップルタウン物語KELDICメロディ言語AstroEgo4D日経イノベーション・ラボ敵対的強化学習GOSU Data LabGOSU Voice AssistantSenpAI.GGMobalyticsAWS Sagemaker形態素解析AWS Lambda誤字検出SentencePiece竹村也哉GOAPAdobe MAX 2021Omniverse AvatarNVIDIA MegatronNVIDIA MerlinNVIDIA Metropolisテキサス大学AI Messenger VoicebotOpenAI CodexHyperStyleRendering with StyleDisneyリサーチGauGANGauGAN2画像言語表現モデルSIGGRAPH ASIA 2021ディズニーリサーチMitsuba2ワイツマン科学研究所CG衣装VRファッションArtflowEponym音声クローニングGopher鑑定Oxia PalusArt RecognitionNHC 2021池田利夫新刊案内マーベル・シネマティック・ユニバースMCUアベンジャーズDigital DomainMasquerade2.0フェイシャルキャプチャー山田暉LSTMモリカトロンAIソリューションコード生成AIAlphaCodeCodeforces自己増強型AICOLMAPADOPGANverse3DグランツーリスモSPORTGTソフィーFIAグランツーリスモチャンピオンシップDGX A100Webcam VTuber星新一賞Live NationWeb3.0AIOpsスマートコントラクトメディア政治NightCafeLuis Ruiz東京工業大学博報堂ラップZ世代AIラッパーシステムプラスリンクス ~キミと繋がる想い~STCStyle Transfer ConversationRCPRinna Character PlatformAmeliaGateboxANIMAK逢妻ヒカリセコムバーチャル警備システム損保ジャパン上原利之アッパーグラウンド品質保証AutodeskBentley SystemsワールドシミュレーターH100COBOLDGX H100DGX SuperPODInstant NeRFartonomousbitGANsコミュニティ管理オンラインゲーム気候変動マックス・プランク気象研究所ビョルン・スティーブンス気象モデル気象シミュレーション環境問題SDGsメモリスタ音声変換Veap JapanEAP福井千春メンタルケアEdgar Handy東京理科大学産業技術総合研究所リザバーコンピューティングソニーマーケティングもじぱ暗号通貨FUZZLEAlterationオープンワールドAIFAP2EStyleGAN-NADAUnity for IndustryGLIDEAvatarCLIPSynthetic DataSonanticCohereUrzas.aiKikiZoetic AIペットDigital Dream LabsCozmoタカラトミーLOVOTMOFLINRomiミクシィユニロボットユニボGato汎用強化学習AIロンドン芸術大学Google BrainSound ControlSYNTH SUPERKarl SimsArtnomeICONATE浜中雅俊福井健策WikipediaSphereXaver 1000養蜂Beewiseフィンテック投資MILIZE三菱UFJ信託銀行西成活裕群衆マネジメントライブビジネス新型コロナ周済涛清田陽司サイバネティックス人工知能史AI哲学マップ星新一StyleGAN-XLStyleGAN3GANimatorVoLux-GANProjected GANSelf-Distilled StyleGANニューラルレンダリングPLATOframe.ioFoodly中川友紀子アールティBlenderBot 3Meta AIマーク・ザッカーバーグWACULAIライティングAIのべりすとQuillBotCopysmithJasperヴィトゲンシュタイン論理哲学論考PromptBaseバンダイナムコネクサスユーザーレビューmimicBaiduERNIE-ViLG古文書凸版印刷AI-OCR画像判定実況パワフルサッカー桃太郎電鉄桃鉄パワサカ岩倉宏介PPOMachine Learning Project Canvas国立情報学研究所石川冬樹スパコンスーパーコンピュータ松岡 聡TSUBAME 1.0TSUBAME 2.0ABCI富岳Society 5.0夏の電脳甲子園座談会NVIDIA GET3DAI絵師UGCPGCNovelAINovelAI Diffusionモーションデータポーズ推定メッシュ生成メルセデス・ベンツMagic LeapEpyllionマシュー・ボールムーアの法則Adobe MAX 2022Adobe ResearchGalactica映像解析東芝デジタルソリューションズSATLYS 映像解析AIPFN 3D ScanPFN 4D ScanDreamUpDeviantArtWaifu Diffusion元素法典Novel AICALAアフォーダンスPaLM-SayCanCode as PoliciesCaPコリジョンチェック山口情報芸術センター[YCAM]YCAMアンラーニング・ランゲージカイル・マクドナルドローレン・リー・マッカーシー鎖国[Walled Garden]​​プロジェクトSIGGRAPH ASIA 2022VToonifyControlVAE変分オートエンコーダーフォトグラメトリ回帰型ニューラルネットワークDeepJoinAzure OpenAI ServiceDeepLDeepL Writeシンギュラリティレイ・カーツワイルヴァーナー・ヴィンジRunway ResearchMake-A-VideoPhenakiDreamixText-to-ImageモデルLatitudeneoAIDreamIconmignstudiffuse対話型AIモデルnotenote AIアシスタントKetchupAI NewsArt SelfieArt TransferPet PortraitsBlob OperaクリムトクリティックネットワークアクターネットワークDMLabControl SuiteAtari 100kAtari 200MYann LeCun鈴木雅大コンセプトアートColie Wertzリドリー・スコット絵コンテストーリーボードPaLM APIMakerSuiteSkebDreambooth-Stable-DiffusionGoogle EarthGEPPETTO AIStable Diffusion web UIAI modelAI ModelsZMO.AIMOBBY’SモビーディックダイビングアウトドアAIスキャニング自動採寸3DLOOKSizerワコールスニーカーUNSTREETNewelseCheckGoods二次流通中古市場Dupe Killer偽ブランド配信ソニー・ピクチャーズ アニメーションFosters+PartnersZaha Hadid ArchitectsライブポートレイトWonder Studio土木インフラAmazon BedrockX.AIX Corp.TwitterXホールディングスMagiSDXLRTFKTNIKEClone X村上隆Digital MarkSnapchatクリエイターコミュニティバーチャルペットNVIDIA NeMo Serviceヴァネッサ・ローザVanessa A Rosa陶芸Play.ht音声AILiDARPolycamdeforumハーベストForGamesゲームマーケット岡野翔太郡山喜彦ジェフリー・ヒントンGoogle I/O 2023武蔵野美術大学BingAILightroomCanvaBOOTHpixivFANBOX虎の穴Fantiaとらのあな集英社少年ジャンプ+ComicCopilotゲームマスターInowrld AIMODGhostwriterSkyrimスカイリムRPGツクールMZChatGPT_APIMZダンジョンズ&ドラゴンズOracle RPG深津貴之xVASynthLaser-NVMERFAlibabaVQRFnvdiffrecNeRFMeshingLERFマスタリングリアム・ギャラガーグライムスBoomyジョン・レジェンドザ・ウィークエンドドレイクエッジワークス日本音楽作家団体協議会FCAVoiceboxさくらインターネットぷよぷよTCGQRコード囲碁デンソーデンソーウェーブ原昌宏日本機械学会ロボティクス・メカトロニクス講演会トヨタ自動車かんばん方式プロット生成FastGAN4コママンガElevenLabsHeyGenAfter Effects絵本出版Ammaar ReshiStoriesStoryBirdVersedProlificDreamerUnity SentisUnity MuseCaleb Ward宮田龍清河幸子西中美和安野貴博斧田小夜CM3leonStable DoodleT2I-Adapter日本マネジメント総合研究所Lily Hughes-RobinsonColossal Cave AdventureAdventureGPTリリー・ヒューズ=ロビンソンBabyAGIGPT-3.5 Turboカーリングウィンブルドン戦術分析パフォーマンス測定IoTProFitXWatsonxAthleticaコーチング北見工業大学北見カーリングホール画像解析じりつくんNTT SportictAIカメラSTADIUM TUBEPixelllot S3AIスマートコーチDreamboothヤン・ルカンPerfusionニューラル物理学毛髪荒牧英治中ザワヒデキ大屋雄裕中川裕志Adreeseen HorowitzNVIDIA Avatar Cloud EngineReplica StudiosSmart NPCsRoblox StudioPromethean AIMusiioEndelSonarSonar+DDolby AtmosSonar Music Festivalライゾマティクス真鍋大度花井裕也Ritchie HawtinErica SynthUfuk Barış MutluJapanese InstructBLIP Alpha日本新聞協会AIいらすとやAI PicassoEmposyAIタレントAIタレントエージェンシーmodi.aiBitSummit Let’s Go!!デジタルレプリカGOT7synthesiaHumanRFActors-HQSAG-AFTRAWGAチャーリー・ブルッカー岡野原大輔自己教師あり学習In-Context Learning(ICL)量子コンピュータqubitIBM Quantum System 2ダリオ・ヒルジェン・スン・フアンHuggingFaceStable Audio宗教仏教コカ・コーラ食品Coca‑Cola Y3000 Zero SugarCopilot Copyright Commitmentテラバース京都大学音声解析感情分析周 済涛ステートマシンディープニューラルネットワークハイブリッドアーキテクチャAdobe Max 2023Bing ChatBing Image CreatorAssistant with BardThe ArcadeSearch Generative ExperienceDynalangVLE-CEAI ActEUArs ElectronicaAI規制欧州委員会欧州議会欧州理事会MusicLMAudioLMMusicCapsAudioCraftMubertMubert RenderGen-2Runway AI Film FestivalPreVizCharacter-LLM復旦大学Chat-Haruhi-Suzumiya涼宮ハルヒEmu VideoペリドットDream TrackMusic AI ToolsLyriaYahoo!知恵袋インタラクティブプロンプトAI石渡正人手塚プロダクション林海象古川善規大規模再構成モデルLRMObjaverseMVImgNetOne-2-3-453Dガウシアンスプラッティングワンショット3D生成技術FGDCFuture Game Development Conference佐々木瞬Anique中村太一エグゼリオCopilotserial experiments lainAI lainPCGPCGRLDungeons&Dragonsビートルズザ・ビートルズ: Get BackDemucs音楽編集ソフトAdobe AuditioniZotopeRX10MoisesレベルファイブGenie AISIGGRAPH Asia 2023C·ASEFLAREダンスMagicAnimateAnimate Anyoneインテリジェントコンピュータ研究所アリババDreaMovingVISCUITScratchスクラッチビスケットプログラミング教育VALL-EDeepdub.aiAUDIOGENEvoke MusicAutoFoleyColourlab.AiディズニーLargo.aiCinelyticTaskadePika.artAI Filmmaking AssistantAI Screenwriter芥川賞文学恋愛タップルAbema TVNEC木村屋GPT Store生成AIチェッカーユーザーローカル九段理江東京都同情塔4Dオブジェクト生成モデルAlign Your GaussiansAYGMAV3Dファーウェイ4D Gaussian Splatting4D-GSGlazeWebGlazeNightShadeSpawningHave I Been Trained?FortniteUnreal Editor For FortniteVolumetricsAIワールドジェネレーターRosebud AI GamemakerLayerCharisma.ai調査Meta QuestIP強いAI弱いAILumiereUNetImageFXMusicFXTextFXKeyframerGemini 1.5AI StudioVertex AIChat with RTXSlackSlack AIPokémon Battle Scopekanaeru占い行動ロジック生成AIConvaiNTTドコモEmemeGenie汎用AIエージェントAIファッションウィークインフルエンサーGrok-1Mixture-of-ExpertsMoEClaude 3Claude 3 HaikuClaude 3 SonnetClaude 3 Opus森永乳業C2PAゲーミフィケーションTomo KiharaPlayfool遊び​​tsukurun地方創生吉田直樹素材OpenAI JapanVoice EngineCommand R+Oracle Cloud InfrastructureGoogle WorkspaceUdio立命館大学京都精華大学TacticAINPMPFOOHProject AstraGoogle I/O 2024感情認識音声加工マルタ大学田中達大Move AIICRA2024大規模基盤モデルTorobo東京ロボティクスインピーダンス制御深層予測学習日立製作所尾形哲也AIREC汎用ロボットオムロンサイニックエックスViLaInPDDLニューサウスウェールズ大学Claude Sammutオックスフォード大学Lars Kunze杉浦孔明田向権VASA-1VoxCeleb2AniTalker上海大学LumaDream MachineNTTAI野々村真GPT-4-turbo佐藤恵助大道麻由物語構造分析慶応義塾大学渡邉謙吾ここ掘れ!プッカ大柳裕⼠加納基晴研究開発事例赤羽進亮UDI(Universal Duel Interface)第一工科大学小林篤史荻野宏実ビヘイビアブランチWPPGeneral Computer Control(GCC)CradleSpiral.AIItakoLLM-7b静岡大学明治大学北原鉄朗中村栄太日本大学ヤマハ前澤陽増田聡採用科学史AIサイエンティストTerraAI Overview電通AICO2BitSummit DriftOmega CrafterSPACE INVADIANS西島大介吉田伸一郎SIGGRAPH2024Motion-I2VToonify3D生成対向ネットワーク拡散モデルDiffusionうめ小沢高広ドリコムai andSaaSインサイトカスタマーサポートComfyUI-AdvancedLivePortraitGUIVideo to VideoiPhone 16OpenAI o1AIスマートリンクシャープウェアラブルCE-LLMCommunication Edge-LLMAIペットYahoo!ニュースAI Comic FactoryAI comic GeneratorComicsMaker.aiLlamaGen.aiGAZAIFlame Planner動画ゲーム生成モデルVirtuals ProtocolMarioVGG松原卓二Art Transfer 2Art Selfie 2Musical CanvasThe Forever LabyrinthRefik AnadolAlexander RebenRhizomatiksMolmoPixMoQwen2 72BDepth ProVARIETASAI面接官キリンホールディングス空間コンピューティングDream ScreenSynthIDFirefly Video ModelStable Video 4DAI受託開発事例田中志弥Playable!3DAdobe MAX 2024SneaksIllustratorMeta Quest 3XR-ObjectsOrion防犯O2Scam DetectionLive Threat Detection乗換NAVITIMEKaedim3DFY.aiLuma AIAvaturnBestatOasisDecartDejaboom!UnboundedEtched声優パブリシティ権日本俳優連合日本芸能マネージメント事業者協会日本声優事業社協議会IAPPTripo 2.0Meta 3D Genスマートシティ都市計画松本雄太Genie 2World LabsCybeverThird Dimension AI東北大学Gemini 2.0フロンティアワークス機械翻訳SimplifiedAI Voice over GeneratorAI Audio EnhancerエーアイAITalkコエステーションPlayStationVRMLTechno Magicゴーストバスターズスパイダーマンポリフォニー・デジタル荒牧伸志Project SidAlteraRobert YangRazerProject AVAStreamlabsIntelligent Streaming AssistantProject DIGITSスーパーコンピューターエージェンテックAI Shortsテルアビブ大学DiffUHaulTrailBlazerヴィクトリア大学ウェリントンzeroscopeQNeRFカーネギーメロン大学RALFグラフィックメイクCanvasProjectsDeepSeek-R1LoopyリップシンクCyber​​HostOmniHuman-1CSAMImagen 3Google LabsMicrosoft Museゲーム生成モデルWHAMデモンストレーターChatGPT Edu滋賀大学キリンビール桜AIカメラSolist-AIロームFactorioカリフォルニア大学GamingAgentAnthropicClaude 3.7 SonnetFactorio Learning EnvironmentFLEDeepseek-v3Gemini-2-FlashLlama-3.3-70BGPT-4o-MiniZOZO NEXTZOZOFashion Intelligence SystemPartial Visual-Semantic EmbeddingWEARGPT-4Vソイル大学AIパズルジェネレーターDolphinGemmaWild Dolphin ProjectSoundStreamトークナイザー音声処理技術GPT-4.1GPT-4.1 miniGPT-4.1 nanoLINE AILINE AIトークサジェストGTC2025Fuxi LabNaraka:Bladepoint MobileバトルロイヤルビヘイビアツリーSoftServeALNAIRAMRIBLADEGAGAQUEENRunway Gen-4SkyReelsStable Virtual CameraIntangibleブライアン・イーノEnoBrain OneAlphaEvolveContinuous Thought Machine(CTM)ArmStable Audio Open SmallWord2WorldSTORY2GAMEウィットウォーターランド大学森川の頭の中花森リドGoogle I/O 2025FlowLyra 2MusicFX DJAnimon.aiツインズひなひまMayaDeep Q-LearningAlphaGOスペースインベーダープリンス・オブ・ペルシャドラゴンクエストIV堀井雄二山名学タイトーカプコンUbi AnvilエンジンV1 Video ModelArtificial AnalysisVideo ArenaVideo Model LeaderboardClaude 3.5Mistral樋口恭介Claude 4小川 昴ホラーゲームStable Diffusion 1.5階層型物語構造夏目漱石漱石書簡京都情報大学院大学上野未貴ブラウザCometKiroAww Inc.Visual BankTHE PENFUJIYAMA AI SOUND富士通西浦めめヘッドウォータース下斗米貴之ディプロマシーOpenAI o3Cluade Opus 4ChatGPT o3カリフォルニア大学サンディエゴ校Everyテトリス逆転裁判Gemini 2.5-proGPT-5ロゼッタ広報MavericksNoLang 4.0gpt-oss金井大組織作りCygnusTaurus笠原達也バグチケット都築圭太仁木一順ライフレビューSIGGRAPH 2025Text-to-MotionMiegakure

【CEDEC2020】メタAIを発展させるパターン・ランゲージからデザインパターンへの応用

2020.9.18ゲーム

【CEDEC2020】メタAIを発展させるパターン・ランゲージからデザインパターンへの応用

スクウェア・エニックス テクノロジー推進部の水野勇太氏は、AIテクニカルゲームデザイナーとして、メタAIを専門に研究を続けています。CEDEC2020のセッション「ゲームデザインにおけるAI活用のための「メタAIデザインパターン」―基本15パターン―」ではメタAIのさまざまなデザインパターンを示し、研究を発展させる礎となるビジョンを示しました。これはメタAIの実装例がまだ少なく作り方が明確ではないという課題を解決するための試みです。

メタAIとは何か

メタAIはゲームAIの一種で、プレイヤーの状況を踏まえて最適な状態にゲームを変化させる役割を果たすためのものです。古くは『パックマン』(1980年、ナムコ)や『ゼビウス』(1983年、ナムコ)でプレイヤーの反応やスキルに応じて敵キャラクターの動きやゲームの難易度を変える仕組みからスタートしており、スクウェア・エニックスのAI研究チームが関連研究を進めているAI分野のひとつです。

3つのゲームAI。キャラクターAI=キャラクターの頭の中、ナビゲーションAI=移動をアシストする、メタAI=ゲームの世界を最適な状態にする

ゲームの世界を飛び出したプロジェクトも生まれています。2019年にはスクウェア・エニックスとオムロンによる共同研究で、卓球ロボット「フォルフェウス」(第6世代)へメタAI機能を搭載し、さまざまなバイタルデータをもとにプレイヤーのモチベーションを高めるフィードバックが行われました。

メタAIを実装することによって、プレイヤーの行動を分析して最適なゲーム展開を考え、ゲームを変化させるなど個々のプレイヤーに対する個別の対応が可能となります。いわばゲームデザイナーあるいはゲームマスターをゲームの中に実装するようなもので、ビデオゲームのオープンワールド化が進むなか今後さらなる発展が期待されています。

では、メタAIはゲーム世界とどのような情報のやり取りをするのでしょうか。水野氏らが提示するメタAIの汎用アーキテクチャは次のとおりです。

メタAIの汎用アーキテクチャ

ゲームワールドからメタAIがセンサーでゲームの情報を取り、その情報をワールドアナライザーで分析します。その分析結果をもとにどのようにゲームを変えるかをゲームメーカーで考え、具体的にどのパラメーターをどれくらい変化させるかをパラメータージェネレーターが計算するという流れです。ここで計算されたパラメーターをエフェクターを通してゲームワールドの変化可能な場所、インタラクションスペースにフィードバックさせます。ここでポイントとなるのは「ゲームワールドの中にプレイヤーもふくまれている」ということです。

キャラクターAIとメタAI

例えばキャラクターAIは剣を持っている時に敵が近ければ持っている剣で敵を攻撃しようと考えて、その運動を生成します。一方、メタAIはワールドアナライザーがどのようなゲーム状況かを分析し、ゲームをどう変化させるかを考えてパラメータを変化させます。ワールドアナライザーはキャラクターAIでいう「認識の形成」、ゲームメーカーは「意思決定」、パラメータージェネレーターは「運動の構成」に相当します。

水野氏は、メタAIとゲームデザインとの兼ね合いを次のように考察します。

挑戦による能力の評価に主眼が置かれているゲームの場合は、メタAIが入るとその基準がブレることになるため好ましくないかもしれません。一方、能力の評価に主眼が置かれない娯楽として楽しむゲームの場合は、メタAIが最適な体験を提供してくれるので好ましいと言えるでしょう。つまり、そのゲームをどのようにプレイするのかによってメタAI導入の向き不向きが変わるということです。(水野勇太氏)

メタAIは必ずしもすべてのゲームに有効とは限りません。こうした理解をエンジニアとゲームデザイナー双方が共有し、自分たちが作ろうとしているゲームのどこにメタAIが有効なのかを見極めることが重要です。そのためには、ゲームデザインという観点からゲームにどのような機能が何のために入っているかを分析する必要があります。

メタAIとゲームデザイン

水野氏は、さまざまなゲームにおいて、それぞれのゲーム機能が何のために入っているのかを分析しました。

何のための機能なのか

難易度を調整するための機能や難易度の”波”を作るための機能であったり、あるいは体験の濃淡をコントロールすることでプレイヤーの飽きを防止するといった機能は、「○○のために○○に基づいて、○○を調整する」という形に変換できます。これにより前項で見たメタAIのアーキテクチャのワールドアナライザーとゲームメーカー、パラメータジェネレーターに対応させることが可能です。例えば、「不満感軽減のためにプレイヤースキルに基づいて難度を調整する」「没入感向上のためにNPCの行動に基づいてゲーム環境を調整する」といったように。「何のための機能なのか」はゲームメーカーのプランの中身、「何に基づくのか」はアナライザーの実際に調査する項目、そして「何を調整するのか」がパラメータジェネレーターの具体的な数字データになります。

一方、水野氏は過去のゲームタイトルにおけるメタAI的な機能についても分析しています。次の図は、各ゲームタイトルごとにワールドアナライザーが何を分析しているのか、ゲームメーカーが何を変化させようとしているのか、パラメータジェネレーターが実際に何を変化させているのかを示したものです。

各ゲームのメタAI要素

何を分析するのかという分析対象がアナライザーに、、なぜその機能が必要なのかという目的がゲームメーカーに、実際に何を変えるかという調整の対象がパラメータジェネレーターに入っていることが分かります。つまり、それぞれのゲームは目的を達成するためにアナライザーの項目を分析し、パラメータージェネレーターの項目を変化させるというメタAIを実装していると言えます。

このように分解して考えてみることで、メタAI導入の検討がより具体的になります。さらに、水野氏がそこで提案するのがパターン・ランゲージです。なぜならビデオゲームへのAIの実装においては、AI側のエンジニアだけではなくゲームの開発エンジニアやゲームデザイナーとのコミュニケーションも重要になってくるからです。

パターン・ランゲージはもともと建築の概念で、建築家であるクリストファー・アレグザンダーが1970年代に提案したものです。現実のさまざまな状況(質)をとらえ、その普遍性を共有して活用するために、暗黙知や実践によるノウハウを共有する仕組みとして、建築以外にも組織マネジメント、あるいはソフトウェア開発などにも取り入れられています。

つまり、ここで水野氏が提唱しているのは「エンジニアとゲームデザイナーの共通言語としてメタAIのためのパターン・ランゲージを考えてみよう」ということです。

パターン・ランゲージとデザインパターン

建築において、なぜパターン・ランゲージが生まれたのか。その理由を水野氏は、1970年代当時の建築が固定的な開発計画に従う形でなされ、基本的な課題を解決できない状態に陥っていたからだと解説します。有機的な秩序、全体性を創造するためにアレグザンダー等は253種のパターンを提示し、パターン・ランゲージによる課題解決を目指したのです。

例えば「手にし得る緑」(手近な緑)と名付けられたパターンは、人々が開放的な緑地を必要とするという前提に基づいています。しかし人がいる場所から3分以上離れていると距離が必要性を圧倒する、つまり3分以上離れた緑地ではダメであるという問題に対して、すべての家や職場から徒歩3分(750フィート≒229メートル)以内に開放的な緑地を作ること、少なくとも面積60,000平方フィート(≒5575平方メートル)、​最も狭い部分で幅員150フィート(≒46メートル)の緑地を作ることが解決策となります。

こうしたフレームで考えることは、あらゆる街に適用できる普遍性を持ちます。どの街、どの地域であっても、この解決法を使って「人にとって快適な緑を提供する」ことができるというわけです。例えば、街よりも規模が小さな大学、大型のショッピングモールにも適用できるでしょう。

パターン・ランゲージは、利用者自身が「何が必要か」を一番知っているにもかかわらず、当時の固定された開発計画による建築ではそれが置いてきぼりにされている状況に対し、利用者自身が参加する計画を作り上げるべきだという思想から始まっています。ここで大切なのは利用者が参加しているという点です。(水野勇太氏)

パターン・ランゲージの3つの段階(抽出→作成→実践)。基本のパターンに基礎知識や原理があり、それが文章化されることでパターン・ランゲージ化され、実際の環境で活用​される

パターン・ランゲージはさまざまな場面で応用できます。例えばオブジェクト指向設計に適用したものが、GoF(Gang of Four)による書籍『オブジェクト指向における再利用のためのデザインパターン』で示された「デザインパターン」です。

パターン・ランゲージとGoFのデザインパターン。ある知見を現場の要求や状況と乖離することなくまとめ上げる手法であるパターン・ランゲージに対し、デザインパターンは設計に特化したパターン・ランゲージの一種と言える
パターン・ランゲージの応用。プロジェクトマネジメントに適用するとエキストリームプログラミングになる。その他にも学ぶこと自体のパターン化、認知症に対するパターン・ランゲージといったものも考えられている

一方、メタAIの実践に足りないものは「参加者」であるエンジニアやゲームデザイナーの意見です。つまり、エンジニアとゲームデザイナーの共有言語を作り上げ、双方の意見を過不足なく反映するための「メタAIのためのパターン・ランゲージ」が必要となります。

メタAIのためのパターン・ランゲージ

下記に水野氏が提案するメタAIのためのパターン・ランゲージの記述フォーマットとメタAIパターン・ランゲージの記述フォーマットを示します。

パターン・ランゲージの記述フォーマット
メタAIパターン・ランゲージの記述フォーマット

どのような状況に対するパターンなのか、そこに起こる問題はどういったものか、それに対しどのような解決策が考えられるのか、それにより、どのようなことが起こってしまうのか(フォース)、どのような結果が得られるのか、その具体例を記述するのがパターン・ランゲージの記述フォーマットです。メタAIのパターン・ランゲージ​ではそれら6つの項目に加え参考文献が挙げられています。

ここでは難度に対するプレイヤーのスコアを監視し、難度を調整できるパターンを例に挙げます。ビデオゲームはプレイヤーごとにスキルが異なるため、同じゲームでもある人には難しく感じられ、ある人には簡単すぎると感じられてしまいます。ここで起こっている問題は「プレイヤースキルに対し最適な難易度のゲーム体験を提供できないこと」です。つまり、簡単すぎたり難しすぎたりしてプレイヤーが離脱してしまう、プレイヤーのスキルやリソースに対し最適なゲームを展開できないということです。

それに対する解決策のひとつとしてスコアの変化を監視するという方法が考えられます。これにより最適な難度でゲームが提供され、難しすぎる/簡単すぎるという理由でプレイヤーが離脱することはなくなります。具体例としては、そのような機能を持つシューティングゲームが考えられます。

しかしその場合、次のような課題も生じます。

【運用可能性】
 ・スコアという形でプレイヤースキルが評価されるゲームにしか適用できない

【制約】
 ・すべてのプレイヤーにまったく同じゲーム展開を提供できない
 ・終了状態がプレイヤーによって異なる

【課題】
 ・スコアが変化するタイミングとプレイヤーの行動のタイミングの間にギャップが生じる

このように、メタAIの機能はパターン・ランゲージで記述できます。さらに水野氏は各ゲームに実装されている具体的なメタAIの機能を分析し6つの大分類に分け、さらにワールドアナライザーで「何を分析するか」で分類することで、22のパターンを抽出しました。

メタAIパターン・ランゲージ​のパターン一覧(1/2)
メタAIパターン・ランゲージ​のパターン一覧(2/2)

メタAIのためのデザインパターン

続いて、パターン・ランゲージ化できたパターンから、実装する際に指針となるデザインパターンへ落とし込んでいきます。記述フォーマットとして用いるのはGoFのデザインパターンのフォーマットです。

GoFのデザインパターンのフォーマット。プログラミングにおける設計のためのパターン・ランゲージとなっており、構造、協調関係といった、具体的なプログラミングにおいて重要となる項目やサンプルコード、使用例、実装といった項目が追加されている

今回はメタAIのデザインパターンもこのGoFと同じフォーマットに則って整理してみました。その際、メタAIの構造をしっかりと踏まえることが大切です。メタAIにはワールドアナライザー、ゲームメーカー、パラメータージェネレーターという3つの要素があります。すなわち「何のためのものなのか」「何に基づくメタAIなのか」、そして「具体的に何を調整するのか」。ゲームメーカーのプラニング、アナライザーの内容、そしてパラメータージェネレーターが生成するパラメーター、この3つを明確にしたデザインパターンにすることが大事です。(水野勇太氏)

水野氏が今回のセッションで提示したメタAIデザインパターンは次の6つです。

  1. スコアベース動的難度低減パターン
  2. 距離ベース緊張度の波生成パターン
  3. スコアベース対戦バランス最適化パターン
  4. プレイヤーの行動ベース評判変化パターン
  5. ゲーム状況ベースBGM変化パターン
  6. 多層セルベースシミュレーションパターン

ここではメタAIパターン・ランゲージ​の部分でも例に挙げた「スコアベース動的難度低減パターン」を説明します。スコアベース動的難度低減パターンは、プレイ状況を示すゲームスコアを監視するパターンで、スコアを記録して平均値と比較しその値に応じて難易度を上げたり下げたりします。同じゲームであってもその人の能力や所持しているアイテムなどリソースによって難易度が変わってしまう場合、このデザインパターンが使えるということになります。

ここで挙げている使用例はサンプルのシューティングゲームですが、実際のゲームでも、シューティングゲーム『バトルガレッガ』*1 がプレイ状況を示すランクを監視して難度をコントロールしています。これは、プレイヤーのさまざまな行動(ミスの数、ボム使用数、パワーアップ状況、無駄撃ちの回数など)に応じてランクを変化させ、そのランクに応じて敵の攻撃の激しさを変化させる仕組みです。

*1:このデザインパターンによって作られているということではなく、このデザインパターンを適用して作ることができる例として上げています。

適用可能性としては、スコアでプレイヤーのスキルが評価できるゲームに適用が可能です。ここで言うスコアはプレイヤーに非公開とすることもでき、敵の数や出現アイテムの種類などにより、難度をコントロールすることができるゲームに適用できます。

プログラムの構造は、上に示すのがワールドアナライザーとしてPlayerSkillAnalyzer、ゲームメーカーとしてDynamicDifficultyAdjuster、パラメータージェネレーターとしてSpawnEnemyNumControllerおよびSpawnEnemySpeedControllerです。下がゲームワールドになり、GameSystemが管理しているスコア、インタラクションスペースのSpawn Systemです。

プレイヤーのスコアをGameSystemが把握しており、そのスコアを分析してプレイヤーのスキルレベルをワールドアナライザーが判別します。そして、プレイヤーのスキルレベルに応じてゲームメーカーが実際に敵の数を増やすのかを決定し、パラメータージェネレーターがその数を算出して、それをゲームワールドのインタラクションスペース側のSpawn Sytemに伝えるという流れで、Spawnされる敵の数やスピードが変化するということになります。

サンプルコードはUnreal Engineのブループリントの形で掲載されました。なお、メタAIのワールドアナライザー、ゲームメーカー、パラメータージェネレーターの3つのパートはメタAI用のブループリントをひとつ作り、その中にワールドアナライザー、ゲームメーカー、パラメータージェネレーターを機能として実装しています。

こちらのデモが示すように、敵をあまり倒せないとスコアの平均値が下がって敵の出現量が少なくなります。一方で、すばやく敵を倒しているとスコアの平均値が上がり、敵の出現量が増えてきます。このようにスコアの平均値に応じて難度が調整されるのがスコアベース動的難度調整パターンです。ここでの紹介はひとつだけとしますので、他の5つについては後ほど公開が予定されている資料をご参照ください。

メタAI デザインパターンの今後の展望

このように、さまざまなメタAIデザインパターンを用いることで、より良い形でビデオゲームにメタAIを実装することができるはずです。とはいえ、パターン・ランゲージの3つの段階を図に示したものの、メタAIに関して今はまだ「抽出」から「作成」の段階です。より多くの事例を踏まえたパターンの追加​や現場での応用によるパターン・ランゲージのブラッシュアップが必要です。もちろん、その際に重要となるのは利用者となるゲームデザイナーやエンジニア自身の参加です。

パターン・ランゲージの実践は、

  1. その実践として利用者自身が参加すること
  2. 少しずつ調整や補修を繰り返してそのパターンランゲージを成長させること
  3. その上で、利用者がどこが活かされているか(いないか)を診断する
  4. そして、それを調整する

といったフローを辿ります。つまり、パターンランゲージを一緒に作り上げていくことでエンジニアとゲームデザイナーのコミュニケーションがスムーズになることが、さまざまな場面でメタAIの実装を推進することにつながるのです。

パターン・ランゲージの実践フロー

水野氏は今後も、誰もが参加可能なメタAIパターンランゲージグループを立ち上げ、新しいパターンやデモの追加、メタAIパターンランゲージの研究などを行っていく予定です。最新情報は下記より入手可能です。

Slack ゲームAIコミュニティ

・ハッシュタグ「#PLoMetaAI

Writer:大内孝子

RELATED ARTICLE関連記事

モリカトロンAIラボ、オープニングにあたって

2019.4.17ゲーム

モリカトロンAIラボ、オープニングにあたって

ディープフェイクの発展と検出のいたちごっこ:月刊エンタメAIニュース vol.29

2022.5.20ゲーム

ディープフェイクの発展と検出のいたちごっこ:月刊エンタメAIニュース vol.2...

ゲームAIのこれまでとこれから:三宅陽一郎氏×森川幸人氏 対談(前編)

2019.4.26ゲーム

ゲームAIのこれまでとこれから:三宅陽一郎氏×森川幸人氏 対談(前編)

RANKING注目の記事はこちら