モリカトロン株式会社運営「エンターテインメント×AI」の最新情報をお届けするサイトです。
- TAG LIST
- CGCGへの扉生成AI安藤幸央吉本幸記月刊エンタメAIニュース河合律子機械学習OpenAIディープラーニングLLM大規模言語モデル音楽GoogleNVIDIAグーグルモリカトロンGAN森川幸人ChatGPT三宅陽一郎強化学習DeepMindStable Diffusion人工知能学会ニューラルネットワークシナリオQAマイクロソフトAIと倫理GPT-3自然言語処理SIGGRAPHFacebook倫理大内孝子映画スクウェア・エニックスルールベースアート著作権音楽生成AIキャラクターAI敵対的生成ネットワークゲームプレイAIMinecraftNPC3DCG動画生成AIデバッグモリカトロンAIラボインタビューアニメーションNFT画像生成VFXロボットファッションStyleGANプロシージャルディープフェイクDALL-E2マルチモーダル遺伝的アルゴリズム自動生成MidjourneyRed RamAdobeVRメタAIマンガテストプレイMeta画像生成AIインタビューゲームAI小説ボードゲーム深層学習CEDEC2019toio教育MicrosoftマインクラフトCLIPテキスト画像生成NeRF不完全情報ゲームビヘイビア・ツリーDALL-ECEDEC2021デジタルツインメタバースStability AIPlayable!高橋力斗GeminiSora作曲アストロノーカロボティクスナビゲーションAI畳み込みニューラルネットワークARアップルスポーツ手塚治虫汎用人工知能3D広告CEDEC2020AIアートはこだて未来大学エージェントGDC 2021バーチャルヒューマンメタデジタルヒューマンJSAI2022ELSIプロンプトGPT-4GDC 2019マルチエージェントHTNソニー栗原聡CNN懐ゲーから辿るゲームAI技術史鴫原盛之NVIDIA Omniverse市場分析東京大学CEDEC2022ジェネレーティブAIDALL-E 3言霊の迷宮CM音声認識UbisoftSIGGRAPH ASIA階層型タスクネットワークJSAI2020マーケティングMicrosoft AzureUnityアドベンチャーゲームインディーゲーム音声合成BERTOmniverseRobloxがんばれ森川君2号AIQVE ONE世界モデルGTC2023JSAI2023電気通信大学AppleGPT-4oJSAI2024ブロックチェーンイベントレポート対話型エージェントシーマン水野勇太ガイスター斎藤由多加YouTubeSF研究シムシティシムピープルTEZUKA2020スパーシャルAIElectronic ArtsメタデータTensorFlowキャリア模倣学習AmazonDQNSIEアバターGenvid TechnologiesStyleGAN2JSAI2021ZorkMCS-AI動的連携モデルモーションキャプチャーAGICygamesサイバーエージェント合成音声モリカトロン開発者インタビュー宮本茂則AWS徳井直生GTC2022NetflixUnreal Engineテキスト生成トレーディングカードメディアアートOpen AIベリサーブGPT-3.5音声生成AI松木晋祐Bardブラック・ジャック村井源稲葉通将マーダーミステリーCEDEC2023RunwayAmadeus Code人狼知能eSportsワークショップクラウドAlphaZeroAIりんなカメラ環世界中島秀之宮路洋一理化学研究所人事DARPAドローン人工生命ASBSぱいどんAI美空ひばり手塚眞GDC Summer岡島学eスポーツスタンフォード大学テニスBLUE PROTOCOLaibo銭起揚自動運転車TransformerGPT-2哲学現代アートバンダイナムコ研究所ELYZANVIDIA RivaチャットボットEpic GamesrinnaSNS松尾豊データマイニングゲームエンジンImagenバイアスサム・アルトマンデザインNEDO森山和道自動翻訳アーケードゲームセガ類家利直大澤博隆SFプロトタイピングコナミデジタルエンタテインメントtext-to-imagetext-to-3DDreamFusionAIロボ「迷キュー」に挑戦Adobe MAXPreferred NetworksPaLMGitHub CopilotGen-1ControlNet建築イーロン・マスクStable Diffusion XLAudio2FaceGoogle I/OFireflyTikTok立教大学KLabLLaMAハリウッドテキスト画像生成AI法律LoRA論文NianticXRApple Vision ProVeoCEDEC2024Runway Gen-3 AlphaスーパーマリオブラザーズWhiskSIGGRAPH Asia 2024GDC 2025JSAI2025CEDEC2025OpenAI Fiveピクサービッグデータナラティブ眞鍋和子齊藤陽介成沢理恵お知らせMagic Leap Oneサルでもわかる人工知能リップシンキングUbisoft La Forge知識表現IGDAどうぶつしょうぎジェイ・コウガミ音楽ストリーミングマシンラーニング5G対話エンジンシーマン人工知能研究所ゴブレット・ゴブラーズ完全情報ゲームウェイポイントパス検索藤澤仁画像認識DeNA長谷洋平ぎゅわんぶらあ自己中心派ウロチョロステンセントNBAフェイクニュースウィル・ライトレベルデザインGPUALifeオルタナティヴ・マシンサウンドスケープTRPGAI Dungeonゼビウス不気味の谷写真松井俊浩パックマン通しプレイ本間翔太馬淵浩希中嶋謙互レコメンドシステム軍事PyTorchモンテカルロ木探索バンダイナムコスタジオ田中章愛サッカーバスケットボールVAERNNウォッチドッグス レギオンHALOMITMuZeroRival Peakリトル・コンピュータ・ピープルコンピューティショナル・フォトグラフィー絵画シミュレーション坂本洋典釜屋憲彦生物学StyleCLIPmasumi toyotaTextWorldBingMagentaGTC2021CycleGANNetHackAIボイスアクター南カリフォルニア大学NVIDIA CanvasNetEaseナビゲーションメッシュ高橋ミレイ深層強化学習ELYZA DIGESTELIZALEFT 4 DEADプラチナエッグイーサリアムボエダ・ゴティエOmniverse ReplicatorNVIDIA DRIVE SimNVIDIA Isaac SimDisneyAI会話ジェネレーターグランツーリスモ・ソフィーVTuberフォートナイトQosmoポケモンCodexSoul Machinesバーチャルキャラクター対談GTC 2022SiemensクラウドコンピューティングOpenSeaGDC 2022Earth-2エコロジーELYZA Pencil医療キャラクターモーションRPGSIGGRAPH 2022LaMDAマジック:ザ・ギャザリング介護松原仁武田英明フルコトデータ分析MILEWCCFWORLD CLUB Champion Football柏田知大田邊雅彦トレカMax Cooper京都芸術大学ラベル付け秋期GTC2022野々下裕子pixivセキュリティ3DスキャンMicrosoft Designerイラスト柿沼太一ScenarioAIピカソAI素材.comAndreessen HorowitzQA Tech Night下田純也桑野範久DreamerV3大阪大学Blenderゲーム背景Point-EアパレルBIMGPTPhotoshopChatGPT4コミコパTencentTEZUKA2023大阪公立大学オムロン サイニックエックス橋本敦史宮本道人LLaMA 2Hugging FacexAIストライキVoyagerIBMソフトバンクSIGGRAPH2023音源分離ユニバーサルミュージックWeb3BitSummitファインチューニンググランツーリスモ北野宏明立福寛FSM-DNNMindAgent効果音NVIDIA ACE慶應義塾大学ヒストリアAI Frog Interactive新清士ComfyUISuno AIKaKa CreationVOICEVOXGPTs3D Gaussian SplattingGDC 2024ポケットモンスターSIMAGemma 2Inworld AIIEEE早稲田大学Apple IntelligenceWWDCWWDC 2024Perplexityくまうた濱田直希ソニー・インタラクティブエンタテインメント遊戯王佐竹空良九州大学伊藤黎Sakana AIByteDanceLINEヤフーDOOMGameNGen社員インタビューMovie GenPlayable!MobilePeridot早瀬悠真Veo 2SONYDeepSeekGDCCube 3DモリカトロンAIコネクトベンチマークHao AI LabClaudeモリカコミックジョージア工科大学MeshyVeo 3ゲーム映像パラメータ設計バランス調整エージェントシミュレーションDota 2ソーシャルゲーム淡路滋グリムノーツゴティエ・ボエダGautier BoedaJuliusTPRGバーチャル・ヒューマン・エージェントクーガー石井敦茂谷保伯マジック・リープノンファンジブルトークン里井大輝GEMS COMPANY初音ミク転移学習デバッギング北尾まどか将棋ナップサック問題SpotifyReplica Studioamuseクラウドゲーミング和田洋一StadiaSIGGRAPH 2019iPhoneAIGraph予期知能ドラゴンクエストPAIRアルスエレクトロニカ2019逆転オセロニア奥村エルネスト純齋藤精一高橋智隆ロボユニ泉幸典ロボコレ2019意思決定モデルLEFT ALIVE長谷川誠Baby Xロバート・ダウニー・Jr.The Age of A.I.レコメンデーションMOBA研修mynet.ai人工音声プレイ動画群知能Sporeデノイズ画像処理CPUGMAIウィザードリィ西川善司サムライスピリッツストリートファイター山野辺一記大里飛鳥13フェイズ構造Oculus Quest生体情報照明山崎陽斗立木創太GameGANソサエティ5.0SIGGRAPH 2020DIB-RApex LegendsNinjaTENTUPLAYMARVEL Future Fightタイムラプスバスキア階層型強化学習WANN竹内将セリア・ホデントUX認知科学ゲームデザインLUMINOUS ENGINELuminous Productionsパターン・ランゲージちょまどFPSマルコフ決定過程協調フィルタリングAlphaDogfight TrialsStarCraft IIFuture of Life InstituteIntelLAIKARotomationドラゴンクエストライバルズ不確定ゲームEmbeddingGTC2020NVIDIA MAXINEビデオ会議階層的クラスタリングtoio SDK for UnityGDMCMITメディアラボMagendaDDSPKaggleAssassin’s Creed OriginsSea of ThievesmonoAI technologyOculusテストBaldur's Gate 3Candy Crush SagaSIGGRAPH ASIA 2020BigGANMaterialGANReBeLVolvoRival PrakユービーアイソフトメタルギアソリッドVFSM汎用言語モデルChitrakar巡回セールスマン問題ジョルダン曲線リアリティ番組ジョンソン裕子MILEsインタラクティブ・ストリーミングインタラクティブ・メディアLudoArtEmisGROVERFAIRチート検出オンラインカジノRealFlowDeep FluidsMeInGameブレイン・コンピュータ・インタフェースBCILearning from VideoユクスキュルカントエージェントアーキテクチャOCTOPATH TRAVELER西木康智OCTOPATH TRAVELER 大陸の覇者StyleRigいただきストリート大森田不可止ザナック仁井谷正充Azure Machine Learning脱出ゲームHybrid Reward ArchitectureSuper PhoenixProject MalmoProject PaidiaProject LookoutWatch Forジミ・ヘンドリックスカート・コバーンエイミー・ワインハウスダフト・パンクGlenn MarshallStory2HallucinationJukeboxSIFTDCGANDANNCEハーバード大学デューク大学ローグライクゲームNeurIPS 2021ヒップホップ詩サイレント映画環境音粒子群最適化法進化差分法下川大樹高津芳希大石真史BEiTDETRSentropyDiscordCALMプログラミングソースコード生成シチズンデベロッパーGitHubMCN-AI連携モデル並木幸介森寅嘉SIGGRAPH 2021半導体Topaz Video Enhance AIDLSSDynamixyzU-NetADVXLandDEATH STRANDINGEric JohnsonコジマプロダクションデシマエンジンMaxim PeterJoshua Romoffハイパースケープミライ小町テスラTesla BotTesla AI Dayバズグラフニュースタンテキ東芝倉田宜典韻律射影韻律転移コンピュータRPGアップルタウン物語KELDICメロディ言語AstroEgo4D日経イノベーション・ラボ敵対的強化学習GOSU Data LabGOSU Voice AssistantSenpAI.GGMobalyticsAWS Sagemaker形態素解析AWS Lambda誤字検出SentencePiece竹村也哉GOAPAdobe MAX 2021Omniverse AvatarNVIDIA MegatronNVIDIA MerlinNVIDIA Metropolisテキサス大学AI Messenger VoicebotOpenAI CodexHyperStyleRendering with StyleDisneyリサーチGauGANGauGAN2画像言語表現モデルSIGGRAPH ASIA 2021ディズニーリサーチMitsuba2ワイツマン科学研究所CG衣装VRファッションArtflowEponym音声クローニングGopher鑑定Oxia PalusArt RecognitionNHC 2021池田利夫新刊案内マーベル・シネマティック・ユニバースMCUアベンジャーズDigital DomainMasquerade2.0フェイシャルキャプチャー山田暉LSTMモリカトロンAIソリューションコード生成AIAlphaCodeCodeforces自己増強型AICOLMAPADOPGANverse3DグランツーリスモSPORTGTソフィーFIAグランツーリスモチャンピオンシップDGX A100Webcam VTuber星新一賞Live NationWeb3.0AIOpsスマートコントラクトメディア政治NightCafeLuis Ruiz東京工業大学博報堂ラップZ世代AIラッパーシステムプラスリンクス ~キミと繋がる想い~STCStyle Transfer ConversationRCPRinna Character PlatformAmeliaGateboxANIMAK逢妻ヒカリセコムバーチャル警備システム損保ジャパン上原利之アッパーグラウンド品質保証AutodeskBentley SystemsワールドシミュレーターH100COBOLDGX H100DGX SuperPODInstant NeRFartonomousbitGANsコミュニティ管理オンラインゲーム気候変動マックス・プランク気象研究所ビョルン・スティーブンス気象モデル気象シミュレーション環境問題SDGsメモリスタ音声変換Veap JapanEAP福井千春メンタルケアEdgar Handy東京理科大学産業技術総合研究所リザバーコンピューティングソニーマーケティングもじぱ暗号通貨FUZZLEAlterationオープンワールドAIFAP2EStyleGAN-NADAUnity for IndustryGLIDEAvatarCLIPSynthetic DataSonanticCohereUrzas.aiKikiZoetic AIペットDigital Dream LabsCozmoタカラトミーLOVOTMOFLINRomiミクシィユニロボットユニボGato汎用強化学習AIロンドン芸術大学Google BrainSound ControlSYNTH SUPERKarl SimsArtnomeICONATE浜中雅俊福井健策WikipediaSphereXaver 1000養蜂Beewiseフィンテック投資MILIZE三菱UFJ信託銀行西成活裕群衆マネジメントライブビジネス新型コロナ周済涛清田陽司サイバネティックス人工知能史AI哲学マップ星新一StyleGAN-XLStyleGAN3GANimatorVoLux-GANProjected GANSelf-Distilled StyleGANニューラルレンダリングPLATOframe.ioFoodly中川友紀子アールティBlenderBot 3Meta AIマーク・ザッカーバーグWACULAIライティングAIのべりすとQuillBotCopysmithJasperヴィトゲンシュタイン論理哲学論考PromptBaseバンダイナムコネクサスユーザーレビューmimicBaiduERNIE-ViLG古文書凸版印刷AI-OCR画像判定実況パワフルサッカー桃太郎電鉄桃鉄パワサカ岩倉宏介PPOMachine Learning Project Canvas国立情報学研究所石川冬樹スパコンスーパーコンピュータ松岡 聡TSUBAME 1.0TSUBAME 2.0ABCI富岳Society 5.0夏の電脳甲子園座談会NVIDIA GET3DAI絵師UGCPGCNovelAINovelAI Diffusionモーションデータポーズ推定メッシュ生成メルセデス・ベンツMagic LeapEpyllionマシュー・ボールムーアの法則Adobe MAX 2022Adobe ResearchGalactica映像解析東芝デジタルソリューションズSATLYS 映像解析AIPFN 3D ScanPFN 4D ScanDreamUpDeviantArtWaifu Diffusion元素法典Novel AICALAアフォーダンスPaLM-SayCanCode as PoliciesCaPコリジョンチェック山口情報芸術センター[YCAM]YCAMアンラーニング・ランゲージカイル・マクドナルドローレン・リー・マッカーシー鎖国[Walled Garden]プロジェクトSIGGRAPH ASIA 2022VToonifyControlVAE変分オートエンコーダーフォトグラメトリ回帰型ニューラルネットワークDeepJoinAzure OpenAI ServiceDeepLDeepL Writeシンギュラリティレイ・カーツワイルヴァーナー・ヴィンジRunway ResearchMake-A-VideoPhenakiDreamixText-to-ImageモデルLatitudeneoAIDreamIconmignstudiffuse対話型AIモデルnotenote AIアシスタントKetchupAI NewsArt SelfieArt TransferPet PortraitsBlob OperaクリムトクリティックネットワークアクターネットワークDMLabControl SuiteAtari 100kAtari 200MYann LeCun鈴木雅大コンセプトアートColie Wertzリドリー・スコット絵コンテストーリーボードPaLM APIMakerSuiteSkebDreambooth-Stable-DiffusionGoogle EarthGEPPETTO AIStable Diffusion web UIAI modelAI ModelsZMO.AIMOBBY’SモビーディックダイビングアウトドアAIスキャニング自動採寸3DLOOKSizerワコールスニーカーUNSTREETNewelseCheckGoods二次流通中古市場Dupe Killer偽ブランド配信ソニー・ピクチャーズ アニメーションFosters+PartnersZaha Hadid ArchitectsライブポートレイトWonder Studio土木インフラAmazon BedrockX.AIX Corp.TwitterXホールディングスMagiSDXLRTFKTNIKEClone X村上隆Digital MarkSnapchatクリエイターコミュニティバーチャルペットNVIDIA NeMo Serviceヴァネッサ・ローザVanessa A Rosa陶芸Play.ht音声AILiDARPolycamdeforumハーベストForGamesゲームマーケット岡野翔太郡山喜彦ジェフリー・ヒントンGoogle I/O 2023武蔵野美術大学BingAILightroomCanvaBOOTHpixivFANBOX虎の穴Fantiaとらのあな集英社少年ジャンプ+ComicCopilotゲームマスターInowrld AIMODGhostwriterSkyrimスカイリムRPGツクールMZChatGPT_APIMZダンジョンズ&ドラゴンズOracle RPG深津貴之xVASynthLaser-NVMERFAlibabaVQRFnvdiffrecNeRFMeshingLERFマスタリングリアム・ギャラガーグライムスBoomyジョン・レジェンドザ・ウィークエンドドレイクエッジワークス日本音楽作家団体協議会FCAVoiceboxさくらインターネットぷよぷよTCGQRコード囲碁デンソーデンソーウェーブ原昌宏日本機械学会ロボティクス・メカトロニクス講演会トヨタ自動車かんばん方式プロット生成FastGAN4コママンガElevenLabsHeyGenAfter Effects絵本出版Ammaar ReshiStoriesStoryBirdVersedProlificDreamerUnity SentisUnity MuseCaleb Ward宮田龍清河幸子西中美和安野貴博斧田小夜CM3leonStable DoodleT2I-Adapter日本マネジメント総合研究所Lily Hughes-RobinsonColossal Cave AdventureAdventureGPTリリー・ヒューズ=ロビンソンBabyAGIGPT-3.5 Turboカーリングウィンブルドン戦術分析パフォーマンス測定IoTProFitXWatsonxAthleticaコーチング北見工業大学北見カーリングホール画像解析じりつくんNTT SportictAIカメラSTADIUM TUBEPixelllot S3AIスマートコーチDreamboothヤン・ルカンPerfusionニューラル物理学毛髪荒牧英治中ザワヒデキ大屋雄裕中川裕志Adreeseen HorowitzNVIDIA Avatar Cloud EngineReplica StudiosSmart NPCsRoblox StudioPromethean AIMusiioEndelSonarSonar+DDolby AtmosSonar Music Festivalライゾマティクス真鍋大度花井裕也Ritchie HawtinErica SynthUfuk Barış MutluJapanese InstructBLIP Alpha日本新聞協会AIいらすとやAI PicassoEmposyAIタレントAIタレントエージェンシーmodi.aiBitSummit Let’s Go!!デジタルレプリカGOT7synthesiaHumanRFActors-HQSAG-AFTRAWGAチャーリー・ブルッカー岡野原大輔自己教師あり学習In-Context Learning(ICL)量子コンピュータqubitIBM Quantum System 2ダリオ・ヒルジェン・スン・フアンHuggingFaceStable Audio宗教仏教コカ・コーラ食品Coca‑Cola Y3000 Zero SugarCopilot Copyright Commitmentテラバース京都大学音声解析感情分析周 済涛ステートマシンディープニューラルネットワークハイブリッドアーキテクチャAdobe Max 2023Bing ChatBing Image CreatorAssistant with BardThe ArcadeSearch Generative ExperienceDynalangVLE-CEAI ActEUArs ElectronicaAI規制欧州委員会欧州議会欧州理事会MusicLMAudioLMMusicCapsAudioCraftMubertMubert RenderGen-2Runway AI Film FestivalPreVizCharacter-LLM復旦大学Chat-Haruhi-Suzumiya涼宮ハルヒEmu VideoペリドットDream TrackMusic AI ToolsLyriaYahoo!知恵袋インタラクティブプロンプトAI石渡正人手塚プロダクション林海象古川善規大規模再構成モデルLRMObjaverseMVImgNetOne-2-3-453Dガウシアンスプラッティングワンショット3D生成技術FGDCFuture Game Development Conference佐々木瞬Anique中村太一エグゼリオCopilotserial experiments lainAI lainPCGPCGRLDungeons&Dragonsビートルズザ・ビートルズ: Get BackDemucs音楽編集ソフトAdobe AuditioniZotopeRX10MoisesレベルファイブGenie AISIGGRAPH Asia 2023C·ASEFLAREダンスMagicAnimateAnimate Anyoneインテリジェントコンピュータ研究所アリババDreaMovingVISCUITScratchスクラッチビスケットプログラミング教育VALL-EDeepdub.aiAUDIOGENEvoke MusicAutoFoleyColourlab.AiディズニーLargo.aiCinelyticTaskadePika.artAI Filmmaking AssistantAI Screenwriter芥川賞文学恋愛タップルAbema TVNEC木村屋GPT Store生成AIチェッカーユーザーローカル九段理江東京都同情塔4Dオブジェクト生成モデルAlign Your GaussiansAYGMAV3Dファーウェイ4D Gaussian Splatting4D-GSGlazeWebGlazeNightShadeSpawningHave I Been Trained?FortniteUnreal Editor For FortniteVolumetricsAIワールドジェネレーターRosebud AI GamemakerLayerCharisma.ai調査Meta QuestIP強いAI弱いAILumiereUNetImageFXMusicFXTextFXKeyframerGemini 1.5AI StudioVertex AIChat with RTXSlackSlack AIPokémon Battle Scopekanaeru占い行動ロジック生成AIConvaiNTTドコモEmemeGenie汎用AIエージェントAIファッションウィークインフルエンサーGrok-1Mixture-of-ExpertsMoEClaude 3Claude 3 HaikuClaude 3 SonnetClaude 3 Opus森永乳業C2PAゲーミフィケーションTomo KiharaPlayfool遊びtsukurun地方創生吉田直樹素材OpenAI JapanVoice EngineCommand R+Oracle Cloud InfrastructureGoogle WorkspaceUdio立命館大学京都精華大学TacticAINPMPFOOHProject AstraGoogle I/O 2024感情認識音声加工マルタ大学田中達大Move AIICRA2024大規模基盤モデルTorobo東京ロボティクスインピーダンス制御深層予測学習日立製作所尾形哲也AIREC汎用ロボットオムロンサイニックエックスViLaInPDDLニューサウスウェールズ大学Claude Sammutオックスフォード大学Lars Kunze杉浦孔明田向権VASA-1VoxCeleb2AniTalker上海大学LumaDream MachineNTTAI野々村真GPT-4-turbo佐藤恵助大道麻由物語構造分析慶応義塾大学渡邉謙吾ここ掘れ!プッカ大柳裕⼠加納基晴研究開発事例赤羽進亮UDI(Universal Duel Interface)第一工科大学小林篤史荻野宏実ビヘイビアブランチWPPGeneral Computer Control(GCC)CradleSpiral.AIItakoLLM-7b静岡大学明治大学北原鉄朗中村栄太日本大学ヤマハ前澤陽増田聡採用科学史AIサイエンティストTerraAI Overview電通AICO2BitSummit DriftOmega CrafterSPACE INVADIANS西島大介吉田伸一郎SIGGRAPH2024Motion-I2VToonify3D生成対向ネットワーク拡散モデルDiffusionうめ小沢高広ドリコムai andSaaSインサイトカスタマーサポートComfyUI-AdvancedLivePortraitGUIVideo to VideoiPhone 16OpenAI o1AIスマートリンクシャープウェアラブルCE-LLMCommunication Edge-LLMAIペットYahoo!ニュースAI Comic FactoryAI comic GeneratorComicsMaker.aiLlamaGen.aiGAZAIFlame Planner動画ゲーム生成モデルVirtuals ProtocolMarioVGG松原卓二Art Transfer 2Art Selfie 2Musical CanvasThe Forever LabyrinthRefik AnadolAlexander RebenRhizomatiksMolmoPixMoQwen2 72BDepth ProVARIETASAI面接官キリンホールディングス空間コンピューティングDream ScreenSynthIDFirefly Video ModelStable Video 4DAI受託開発事例田中志弥Playable!3DAdobe MAX 2024SneaksIllustratorMeta Quest 3XR-ObjectsOrion防犯O2Scam DetectionLive Threat Detection乗換NAVITIMEKaedim3DFY.aiLuma AIAvaturnBestatOasisDecartDejaboom!UnboundedEtched声優パブリシティ権日本俳優連合日本芸能マネージメント事業者協会日本声優事業社協議会IAPPTripo 2.0Meta 3D Genスマートシティ都市計画松本雄太Genie 2World LabsCybeverThird Dimension AI東北大学Gemini 2.0フロンティアワークス機械翻訳SimplifiedAI Voice over GeneratorAI Audio EnhancerエーアイAITalkコエステーションPlayStationVRMLTechno Magicゴーストバスターズスパイダーマンポリフォニー・デジタル荒牧伸志Project SidAlteraRobert YangRazerProject AVAStreamlabsIntelligent Streaming AssistantProject DIGITSスーパーコンピューターエージェンテックAI Shortsテルアビブ大学DiffUHaulTrailBlazerヴィクトリア大学ウェリントンzeroscopeQNeRFカーネギーメロン大学RALFグラフィックメイクCanvasProjectsDeepSeek-R1LoopyリップシンクCyberHostOmniHuman-1CSAMImagen 3Google LabsMicrosoft Museゲーム生成モデルWHAMデモンストレーターChatGPT Edu滋賀大学キリンビール桜AIカメラSolist-AIロームFactorioカリフォルニア大学GamingAgentAnthropicClaude 3.7 SonnetFactorio Learning EnvironmentFLEDeepseek-v3Gemini-2-FlashLlama-3.3-70BGPT-4o-MiniZOZO NEXTZOZOFashion Intelligence SystemPartial Visual-Semantic EmbeddingWEARGPT-4Vソイル大学AIパズルジェネレーターDolphinGemmaWild Dolphin ProjectSoundStreamトークナイザー音声処理技術GPT-4.1GPT-4.1 miniGPT-4.1 nanoLINE AILINE AIトークサジェストGTC2025Fuxi LabNaraka:Bladepoint MobileバトルロイヤルビヘイビアツリーSoftServeALNAIRAMRIBLADEGAGAQUEENRunway Gen-4SkyReelsStable Virtual CameraIntangibleブライアン・イーノEnoBrain OneAlphaEvolveContinuous Thought Machine(CTM)ArmStable Audio Open SmallWord2WorldSTORY2GAMEウィットウォーターランド大学森川の頭の中花森リドGoogle I/O 2025FlowLyra 2MusicFX DJAnimon.aiツインズひなひまMayaDeep Q-LearningAlphaGOスペースインベーダープリンス・オブ・ペルシャドラゴンクエストIV堀井雄二山名学タイトーカプコンUbi AnvilエンジンV1 Video ModelArtificial AnalysisVideo ArenaVideo Model LeaderboardClaude 3.5Mistral樋口恭介Claude 4小川 昴ホラーゲームStable Diffusion 1.5階層型物語構造夏目漱石漱石書簡京都情報大学院大学上野未貴ブラウザCometKiroAww Inc.Visual BankTHE PENFUJIYAMA AI SOUND富士通西浦めめヘッドウォータース下斗米貴之ディプロマシーOpenAI o3Cluade Opus 4ChatGPT o3カリフォルニア大学サンディエゴ校Everyテトリス逆転裁判Gemini 2.5-proGPT-5ロゼッタ広報MavericksNoLang 4.0gpt-oss金井大組織作りCygnusTaurus笠原達也バグチケット都築圭太仁木一順ライフレビューSIGGRAPH 2025Text-to-MotionMiegakure
【CEDEC2019】DeNAのゲームAI開発に見る”AIを活かす組織”とは?
DeNAは現在「ネクストオセロニア」という言葉を掲げ、これまでのゲームにおけるAI開発を振り返っています。これは『逆転オセロニア』の開発における成功と失敗を、次のAI開発にどのように活かしていけばよいかを探ろうというものです。本稿ではCEDEC2019で発表されたセッション「組織的に Game x AI を推進していくための方法論 〜『逆転オセロニア』 の一歩先へ〜」の内容を取り上げます。
DeNAのゲームAI開発のこれまで
DeNAの『逆転オセロニア』(以下、オセロニア)は、ゲーム開発に機械学習を導入した成功事例として知られていますが、DeNAの中でどのような位置づけで始まったものだったのでしょうか。
セッションの前半を担当した田中一樹氏(株式会社ディー・エヌ・エー AI本部AIシステム部データサイエンス第一グループ データサイエンティスト)によれば、ゲームアプリ運用の課題解決に向けて、古典的なAI技術のみならず、機械学習やディープランニングといった最新技術を視野に入れたAIを活用する試みを始めたのが2016年のこと。2016年から2017年にかけては、AIでできることの可能性を模索していたフェーズです。
はじめに取り組んだのはゲームアプリ運用の課題解決です。大きな課題のひとつとして、ゲームアプリにおけるステージ設計の難易度調整の工数が大きいという点がありました。従来の工程では、パラメータを設計して、値を入力して、そのあと難易度が意図通りになっているのかを確かめるためにテストプレイをします。この作業を繰り返すことで理想的なステージや難易度を調整していきます。
その作業工程のコストを軽減させるために、強いAI(ここで言う強いAIとは、人間の知能に迫るようなAIのこと)を作ることで自動テストプレイを行い、プレイした結果をもとにステージの難易度調整を適切かつ効率的に行うユースケースを目指したのです。開発の手法としては、古典的なMCTS(Monte Carlo Tree Search:モンテカルロ木探索)からリカレントニューラルネットワーク(Recurrent Neural Network:RNN)、強化学習なども検証していきました。
この取り組みは当時の社内ではあまり事例のない新しい領域への挑戦でした。結果として、まずAIを学習して作るということには成功しましたが、さまざまな課題があったため導入するには至りませんでした。とはいえ、特定の条件下では強いAIを作ることができ、それを可視化することでAIの可能性を垣間見ることもできたとのことです。
これはとても大きな収穫でした。まだAIの事例がない中で、実際のゲーム開発を通して課題の探索からAIの作成まで行い、AIで解決できそうな課題を発掘できました。AIの可能性を垣間見ることができましたし、今後につながる取り組みだったと思います。(田中一樹氏)
この取り組みをきっかけに、DeNAは本格的にゲーム開発におけるAIの活用を推進することになります。そして、2017年にオセロニアで強化学習を使ったバランス調整を行う強いAIを作るところから始めて、最終的に複数のAI機能を実装しました。現在は、今までの知見や技術の応用範囲を拡大させるために、組織的にスケールさせるフェーズに入っているとのことです。

オセロニアにおける2つのAI機能
ここで、オセロニアに実装された2つのAI機能について紹介します。ひとつは「オセロニア道場」、人間のように戦うAIと対戦できるという機能です。もうひとつはおすすめのデッキを提案してくれる「おすすめ編成」という機能です。
まず、オセロニア道場ですが、これは「手ごわい敵と気軽に戦う場がない」「さまざまなアーキタイプとの戦い方を覚えるのが大変」という課題を解決しようとしたものです。これまではPvE(対CPU戦)とPvP(対プレイヤー戦)の2つしかなく、特に初心者プレイヤーにとって、いきなり強いプレイヤーと戦うのは難しかったのです。また、アーキタイプごとの戦い方も覚えなければなりません。このユースケースは、より人間らしいAIを相手に戦うことができたら戦術のサポートができるのではないか、という発想から生まれました。使っている技術は、プレイヤーの対戦ログから学習するディープランニングです。

初心者プレイヤーにとって、多種多様な駒の中からデッキを組むのが困難なのではないかという仮説から始まったのが、プレイヤーの所持コマに合わせてデッキをレコメンドしてくれるAI機能「おすすめ編成」の開発です。ここでは古典的なアソシエーション分析、データサイエンスのレコメンド技術を採用しています。この試みで得られた一番大きな成果は、AIを作った機能をリリースして運用まで持っていけたことです。また、事業価値的にもポジティブな結果が複数あり、AIのポテンシャルを実証できたことも成果として挙げられます。
ただ、発想からユースケースへの落とし込みには、ゲームに精通した知識と技術への結びつけが必要で、そうした試行錯誤に時間がかかりました。とはいえ、PoCではなく「使えるAI」を作ることができたのは大きな前進で、リリースしたAIに触れた多くのプレイヤーからのフィードバックを受け、DeNAの中では「AIがゲームに新たな価値をもたらす」ことが少しずつ確信に変わっていったのです。
そして、AIの重要性を革新したDeNAは、それまで蓄積してきたことを効率的に活かしていくためには組織としてAIの活用をスケールさせる必要があると判断します。オセロニアだけではなく、さまざまなタイトルでAIをうまく活用することができれば、企業として新しい武器を持つことになります。では、どうすればもっとうまくAIを使いこなすことができるのでしょうか。そこで出てきた2つのキーワードが「ボトムアップ」と「トップダウン」です。
ボトムアップは、従来のように現場レベルで課題を探索することで、まったく別のユースケースを探し出す0から1の取り組みのことを指します。一方でトップダウンは、会社としてAIを計画的にスケールさせるために未知のユースケースを拡大させていく1から10のアプローチです。どちらか一方がより重要というわけではなく、両者ともにAIを活用していく上で大切な要素となります。

ボトムアップという取り組み
AIでできることの課題探索はボトムアップの取り組みで、エンジニアだけではなく、アナリスト、データサイエンティスト、プランナーなど、サービスやデータに触れているメンバーが協力して行います。タイトルチームからAIチームに対して、「ゲーム開発のここをAIで解決できないか」と疑問が投げかけるところからスタートし、それに対してAIチームからできそうな方法を提案します。それとは逆にAIチーム内から、「こういうことができるのではないか」と、タイトルチームに対して提案する動きもあります。
チーム間の信頼関係を築いたことにより、スムーズにAI活用の推進をスタートさせることができました。ボトムアップの取り組みの主要な目的は、ゲーム領域で目の前にある事業課題をデータやAIの力で解決することです。このようにサービスやデータに触れているメンバーが双方向に協力して目的達成に向けて動いています。(岡田健氏)
その際の大切なポイントとして言及したのは、次の2点です。
- 特定のゲームだけではなく、マーケティングやカスタマサポートなど、幅広いゲーム関連事業、業務と連携して進めること(これは、横展開が可能な技術を意識することにもつながる)
- 新たな技術の習得やユースケースの発見には不確実性というリスクも伴うため、つぶれる取り組みの存在を一定数は許容し、心理的安全性も確保できる仕組みを意識すること
部署を横断するさまざまな取り組みも行われており、例えばアナリストが所属する分析部、AIの専門家が所属するAIシステム部やAI推進部など、AIの開発に携わる部署間で互いの進捗や技術トレンドを共有する機会を持つことが、ポジティブな効果につながっています。
また、明確な戦略なしに課題や案件の探索を行っていくと、それぞれのメンバーの責任分界点が曖昧になって進めづらくなるため、適切な役割分担を定義して関係者の認識を揃えることであるべき”姿”を明瞭にし、効率的に案件や課題の探索を進められる体制にしています。

成功や失敗の如何に関わらず取り組んだ事例の成果を次につなげられる体制を作るために、AIや機械学習、データサイエンスの案件を安全に進められる推進フローも社内で策定しました。これによって、取り組む価値が不明確であったり、明らかにAIではできないような無理難題な案件が進んでしまうことを回避できるようになりました。このように、地道な地盤作りをすることでAI開発を持続可能な状態にできるようにしていきました。
この推進フローの策定により、ゲーム開発に関わるさまざまな業務がフローに入り込み、今まで見えてこなかった課題を発見できるなど、組織としてのAIの活用の幅を広げることができるようになりました。また、さまざまな関係者がAI活用について議論することで、組織レベルでのAIのリテラシーが向上にもつながっているとのことです。
こうしたボトムアップの取り組みで生まれた事例としては、オセロニアのアーキタイプの自動抽出とゲーム運用への活用が挙げられます。AI部分はAIエンジニアや機械学習アナリストが開発していますが、運用にも関わる部分のためプランナーやタイトル側のエンジニアとも協力して完成させました。
トップダウンのAI開発とシミュレータ
もう一方のトップダウンのAI開発では、事業インパクトが出せる領域に対して計画的にAIの活用をスケールさせる必要があります。まずは組織的な動きとして、ゲーム分野におけるAIの応用的な活用を推進するためのチームとしてAI推進チームを設置しました。このAI推進チームの役割は大きく2つ、「事例・知識の蓄積」と「現場との架け橋」です。

AI推進チームでは、社内・社外を問わず過去の実績、事例、ユースケースを蓄積しています。どのような課題に対して、どのような技術を使い、どのような結果を得たのか、それらを調べた上で組織に還元することで、初めて課題に取り組むことができます。具体的には、開発の現場である各タイトルチームにヒアリングし、課題を把握した上で過去の事例の適用も視野に入れた解決策を提案します。そして、適切な専門家につなぎます。機械学習の勘所とゲームのドメイン知識やゲームの開発の経験も必要になってくるため、エンジニアリングの知識やスキルも併せ持っています。
このようなAIとの橋渡しの専門家は今まで注目されていなかった部分ですが、今は会社として積極的に投資しています。(岡田健氏)

これは、オセロニアの事例を振り返った際に、当時は「事例・知識の蓄積」と「現場との架け橋」、この2つの動きが欠けていたという分析から見えた課題です。

そして、ゲームに機械学習を応用する際にシミュレータが大きな役割のひとつを担っていると岡田氏は言います。
ここでシミュレータを取り上げる理由を明確にしておきます。AIの取り組みのためにまず必要なのは、何をどのようなストーリーで解決したいのかという課題とユースケースを決めることです。シミュレータはそのための手段となる技術でしかありません。ただ、用途は広いです。各社の発表を見ても、まずはシミュレータとなることが多いです。インゲームが絡んでくると、やはりここが重要になります。(岡田健氏)
よくシミュレータは大事、初期からシミュレータを作っておくべき、ビューとロジックを分離しておくようなゲームの作りにしておきましょうという話になります。しかし、岡田氏はそれでは片手落ちだと指摘します。やはり、ユースケースありきで考えるべきで、それを意識したときに浮かび上がってくるのが「ゲーム本体とAIの境界」と「やりたいことに対しての要件定義」です。
「オセロニア道場」の例では、ユースケースは強いAIと自由に対戦できる環境を作るというものでした。そして、インバトルの強いAIを教師あり機械学習で作ることを目指しました。このとき「境界」には何が必要になってくるのかを、内部構造と作業フローの2つの視点で見ていきます。
オセロニア道場の内部構造は図のとおりで、ゲームの端末から記譜を推論APIに投げ、特徴量抽出APIで特徴量に変換し、それをAIのモデルで推論した結果(出てきた打ち手=どこに何をおくのか)、その価値をクライアントに返す、という流れになります。その際に生じる境界がゲームとAIの境界です。左側がゲームの世界、右側がAIの世界、それをつなぐのが特徴量抽出機です。特徴量抽出機は記譜を特徴量に変換します。左が記譜、右が特徴量。オセロニアの特徴量抽出は今の盤面を再現して、そこから情報(どこの場所に黒石が置かれていたのか、手札にどういうキャラクターがいるのか、など)を抜き出します。実際のオセロニアでは、これをPythonで実装しています。

振り返りの課題として岡田氏が上げるのは次の2点です。
- 記譜ログをAI用に設計すること
- バトルロジックの二重管理をやめること
ここで重要なのはリプレイが可能かどうかです。「そもそものゲームのバトルロジックをリプレイ可能にしておき、記譜に従い、ビューなしでバトルをリプレイして特徴抽出できるようにするべき」と岡田氏は語ります。
ゲームはプレイヤーからの入力を受けてメモリが変化し、その結果画面が変化してプレイヤーとインタラクトするものですが、この図の通り、現状はバトルロジックとビューロジックが分かれ、直接インタラクトしない形になっています。プレイヤーからどこに何のコマを置いたのかという入力コマンドが入ってくると、バトルロジックはそれを今の盤面に置いて、ダメージを計算して、内部状態を変化させます。その結果、どういう描画をするのかを描画ロジックに指示します。バトルロジックは入力を出力に変換する機械なのです。そして、AIのトレーニングなどで使うシミュレータを考えるために、入力コマンドを記譜ログに保存します。

入力を一元化し、学習段階と同じ記譜ログをバトルロジックに流し込み、それで特徴量抽出を行うようにすれば、リプレイ可能になります。こうしておくことで、同じ入力が与えられた際に内部状態も出力も同じになるはずです。

次は作業フローの点から見ていきます。AIコンテンツは、いくつかのフェーズを経て開発されます。重要なのは、目的は学習だけではないということです。AIのモデルに対しても、AIの専門家がAIの品質保証をしなければなりません。


まずAIの学習から始まります。ゲームからは対戦ログのデータが取れています。学習は、バトルロジックをラップした特徴量抽出(リプレイヤー)を使って行います。こうして疎結合にしておくことで、複数のマシンで学習データを生成することができるようになります。ここでのアウトプットは学習したAIのモデルです。
次に、勝率の評価です。学習はアウトプットとしてAOIのモデルを生み出しますが、それを「ふるい」にかけます。NPCや既存の他のモデルと戦わせて強いかどうかを判断し、弱いモデルは捨てられます。ここでのシミュレータは対戦サーバで、従来の狭義のシミュレータと呼ばれるものです。対戦環境を作って、実際のバトルロジックを動かしてPythonから対戦できるものです。ここでは対戦のログが出てきます。

そして、勝率評価で出てきた対戦ログは打ち手の評価に使います。打ち手の評価とは、人間がAIの打った手を見て、実際に目で確認して評価をすることです。AIの学習は試行錯誤するものです。その際、勝率が上がらない原因は何なのか、どういった状態のときにどういうパターンで負けるのかを分析します。このイテレーションをできるだけ短く行うことが非常に重要です。

そのためにはゲームのいちデバッグ機能として、バトルをリプレイして観戦する機能が必要となります。AIの対戦ログをどこかのサーバに置き、必要な際には即座に見られるようにしておくことが望ましいです。勝率評価を勝ち残ったモデルは、試し打ちを経てAIコンテンツにデプロイされます。試し打ち評価とは、実際に人間がAIと戦ってみて、どれだけ強いか、人間らしく打てるかを評価するステップのことを指します。そのための仕組みは、本番の推論とほぼ同じシステムです。注意点としては、やはりここでもイテレーションを回しやすいように作っておくことが望ましいということです。

このように、ひとつのユースケースだけを見てもゲームとAIの境界となる部分はたくさんあります。AIを活用するためには、これらすべてがしっかり機能する必要があります。リプレイ可能なように最初の段階から設計しておくことが重要です。(岡田健氏)
DeNAでは、オセロニアの2つのプロジェクトを経て、ゲームの文脈でAIを使いこなすために必要なことが見えてきたという状況です。現在はボトムアップで探索し、トップダウンで推進するという形で、次の段階に向けて動き出しています。最後に岡田氏は、最も大事なことはゲーム開発者とAIの開発者が協力すること、AIを使ってゲームをおもしろくしたり、ゲームの開発を効率的にするためには、現場からの声、新しい企画、エンジニアの腕が重要だと締めくくりました。
Writer:大内孝子